

HOT RUNNER AND CONTROLLERS PRODUCT HANDBOOK

VERSION 19.3

Table of Contents

- Section 1 General Hot Runner Information
- Section 2 Valve Gate Nozzle Stacks
- Section 3 UltraSync
- Section 4 Individual Servo Valve Gate (ISVG)
- Section 5 Hot Tip Nozzle Stacks
- Section 6 Ultra SideGate
- Section 7 PRONTO-Direct
- Section 8 PRONTO
- Section 9 Stack Hot Runners
- Section 10 UNIFY
- Section 11 Bolted Manifold System
- Section 12 New Technologies
- Section 13 Services
- Section 14 General Controller Information
- Section 15 Operator Interface
- Section 16 H-Series Card
- Section 17 Cables
- Section 18 Altanium Servo Control
- Section 19 Valve Gate Sequencer

In this section:

Page

1-1	Ultra Advantage
1-2	Hot Runner System
1-3	Nozzle Size
1-4	Melt Flow Index / Viscosity

Ultra Advantage

UltraGuide

- Reduced gate and stem wear
- Stem pre-aligned before gate
- Cylindrical shut-off

UltraSeal

- Guaranteed leakproof operation
- Less plate deflection
- Preload nozzle to manifold

Ease of Maintenance

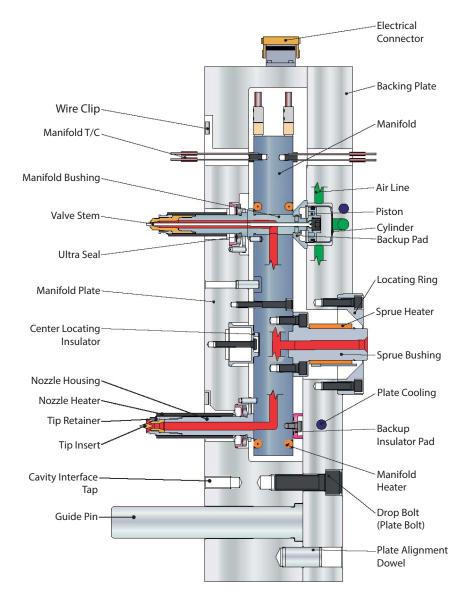
- Nozzle tips, thermocouples and heaters are replaceable in the press
- Single O-ring operates in a cooled backing plate for reduced maintenance

Ultra Helix

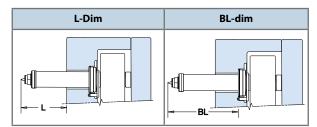
- Superior gate quality with precise stem alignment
- Industry leading gate longevity
- Continuous valve stem guidance

Wear Resistant Tips

• Improved longevity when processing abrasive materials



Wide Operating Window


- Wide temperature ranges without stringing or freeze-off
- Faster cycle times
- Robust seal-off

Hot Runner System

Nozzle Sizes

Nozzle Size	L-Dim	Range	BL-Dim Range		
	Hot Tip Valve Gate		Hot Tip	Valve Gate	
Ultra 1000					
	13 – 300mm*	15.7 – 300mm*	82 – 320mm	82 – 320mm	
	[0.51 – 11.81"]	[0.62 – 11.81″]	[3.22 – 12.59″]	[3.22 – 12.59"]	
Ultra 750 & Ultra Helix 750 (VG only)⁺					
	27.4 – 290mm*	27.4 – 290mm*	48.8 – 305mm	55.6 – 305mm	
	[1.37 – 11.41"]	[1.22 – 11.41″]	[1.92 – 12"]	[2.19 – 12"]	
Ultra 500 & Ultra Helix	13 – 290mm*	13 – 290mm*	48.6 – 305mm	48.6 – 305mm	
500 (VG only)	[0.51 – 11.41"]	[0.51 – 11.41″]	[1.91 – 12"]	[1.91 – 12"]	
Ultra 350 & Ultra Helix	13 – 218mm*	13 – 218mm*	53.2 – 234mm	53.2 – 234mm	
350 (VG only)	[0.51 – 8.58"]	[0.51 – 8.58″]	[2.09 – 9.21″]	[2.09 – 9.21″]	
Ultra 250 & Ultra Helix	13 – 164mm*	13 – 150mm*	79.4 – 179mm	79.4 – 165mm	
250 (VG Only)	[0.51 – 6.45"]	[0.51 – 5.90″]	[3.12 – 7.04"]	[3.12 – 6.49"]	

Notes:

• For L-Dimensions above or below range, contact Husky

+ Min L-Dimension might require specific Nozzle Heater technology

* Max L-Dim reduces when drop number increase as the cable channels get deeper:

From 5 to 12 Drops -max BL-Dim minus 20mm

From 13 to 32 Drops -max BL-Dim minus 25mm

From 33 to 64 Drops -max BL-Dim minus 35mm

From 65 to 96 Drops -max BL-Dim minus 45mm

From 97 to 144 Drops -max BL-Dim minus 65mm

From 145 to 192 Drops-max BL-Dim minus 90mm

Melt Flow Index / Viscosity

Resin		Low Viscosity	Medium Viscosity	High Viscosity	Resin Structure
ABS, MABS, ASA	MVR		35	1	A
COC, COP	MVR	45		5	A
EVA	MVR		2		SC/A
LCP	MVR				SC
PA	MVR	200		5	SC
PBT	MVR	60		4	SC
PC / PC Blends (excluding PC+PLA)	MVR/MFR		50	3	A/B
PE (HDPE, MDPE, LDPE,LLDPE)	MFR	50		0.5	SC
PEEK	MVR		70	8	SC
PEI	MVR		40	10	А
PET, Copolyester, PETG, PCTA, PCTG	IV		0.5	0.9	SC/A
PLA	MFR		40	5	SC
PMMA, SMMA	MVR		30	1	А
POM	MVR		50	1	SC
PP	MFR	100	1		SC
PPA	MVR				SC
PPS	MVR		90	10	SC
PS, GPPS, HIPS	MVR/MFR	50	2		A
PSU, PPSU	MVR		70	2	A
PVC-Flexible	Shore	Sho	re A 50-90		A
SAN	MVR		30	4	A
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	Shore	Shore A <80 -	Shore D >30		A

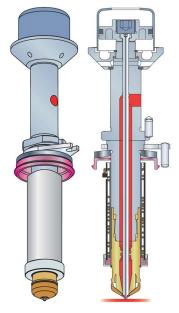
Bars represent typical Melt Flow Index ranges MFI value is based on most common test condition

A - Amorphous B - Blend SC - Semi-Crystalline

In this section:

Page

2-1Key Advantages
2-2Typical Vestige Geometry
2-3Valve Stem Actuation Option
2-5Ultra Helix Gate Detail Dimensions
2-7Valve Gate Detail Dimensions
2-9Pitch Spacing
2-12Ultra Helix Valve Gate Technology
2-14 Ultra Helix 250 T2 Nozzle Stack
2-15 Ultra Helix Packaging VG
2-16Ultra Helix Packaging VG Application Guidelines
2-17Ultra Helix 250 Valve Gate-Application Guidelines
2-18Ultra Helix 350 Valve Gate-Application Guidelines
2-19Ultra Helix 500 Valve Gate-Application Guidelines
2-20Ultra Helix/Ultra 750 Valve Gate-Application Guidelines
2-21Ultra 1000 Valve Gate-Application Guidelines
2-22 Single Drops
2-23Configure to Order (CTO)
2-23Engineering to Order (ETO)


In this section:

Page

2-24	Single Drops-SCVC
2-25	Ultra 500 HP - High Pressure (VG/VX

2-26......Valve Gate Air Circuit Recommendations and Machine Setup

Key Advantages

Ease of Maintenance

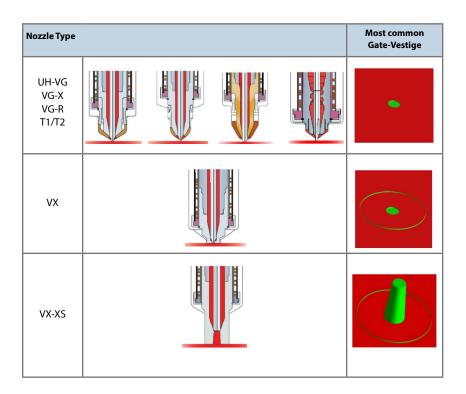
- O-ring replaceable without pulling valve stems
- Double Delta O-ring in cooled backing plate doubles seal life
- Tips, nozzle heaters & T/Cs replaceable in the press

UltraSeal

- 3 year guaranteed leakproof operation
- Pre-loads nozzle to manifold
- Minimizes plate deflection / bowing

UltraGuide/Ultra Helix

- Valve stem pre-aligned before gate
- Reduced gate / stem wear
- Thermally conductive component for fast start-up
- Cylindrical (Plunger) shut-off for improved gate quality


Valve Gate Stem Shut-off Options

Cylindrical (Plunger)	 0° shut-off Ultra Helix technology pre-aligns stem to gate, minimizing gate wear Superior gate quality for non-abrasive resins Requires higher manufacturing
	tolerances
Taper	 40° shut-off Gate geometry used to align valve stem Requires more strength in gate area to avoid premature cracking

Plunger vs. Taper General Stem Shut-Off Guideline

Description	Plunger (Whenever possible Husky will use a plunger stem shut-off)	Taper
Gate Quality Expectations	Best	Good
Gate Quality vs. Cycle Time	Gate	Cycle
Mfg. Tolerance Requirements	High	Medium
Wall Thickness in Gate Area	Thick	Thin
Crack Development in Gate Area	Unlikely	Potential

Typical Vestige Geometry

Valve Stem Actuation Option

Actuation	Key points	Nozzle Sizes Available	
PX (Tight Access)	 Double Delta O-ring design for ease of maintenance Small diameter piston for tight pitch spacing down to 25.4mm (1") Extended maintenance interval design to combat weepage prone resins Up to 200psi (13.8bar) air pressure may be required for proper operation of PX valve gated systems 	Ultra 350 Ultra 500 Ultra Helix 250 Ultra Helix 350 Ultra Helix 500	
SX (Small Pitch)	 Double Delta O-ring design for ease of maintenance Up to 200psi (13.8bar) air pressure may be required for proper operation of SX valve gated systems Insufficient air pressure provided to SX piston can lead to stems seizing, sticking, and/or posting on the molded part 	Ultra 350 Ultra 500 Ultra Helix 350 Ultra Helix 500	
LX (Standard)	Double Delta O-ring design for ease of maintenance	Ultra 350 Ultra 500 Ultra 750 Ultra Helix 350 Ultra Helix 500 Ultra Helix 750	
EX (Large Piston)	 Double Delta O-ring design for ease of maintenance Used for high stem force applications 	Ultra 350 Ultra 500 Ultra 750 Ultra Helix 350 Ultra Helix 500 Ultra Helix 750	
Ultra 1000	 Double Delta O-ring design for ease of maintenance Used for medium sized parts 	Ultra 1000	

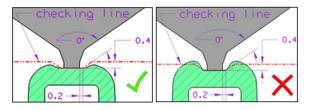
Valve Stem Actuation Option (continued)

Actuation	Key points	Nozzle Sizes Available	
UltraSync Plate Actuation	 All standard valve gating styles Actuation drive designs Electric (Servo Motor) - UltraSync-E Hydraulic - UltraSync-H Pneumatic - UltraSync-P * UltraSync-H not available with Ultra Helix 250 	Ultra 350 Ultra 500 Ultra 750 Ultra Helix 250* Ultra Helix 350 Ultra Helix 500 Ultra Helix 750	
Individual Servo Valve Gate (ISVG)	 Gating styles available - VG, VX, Ultra Helix Plunger 	Ultra 350, 500 750 Ultra Helix 350, 500, 750	
Air Plate	 Allows for easy access to back end valve gate components O-rings, cylinder caps, pistons and stems accessible in the press without removing backing plate Limiting factor for tight pitch applications Individual drop airplate or multi-drop airplates are available 	All	

Ultra Helix Gate Detail Dimensions

Gate Detail Dimensions (mm [in])									
Size	Tip Style	A *	В	с	D	E	F	Gate Detail	Std. Gate Dia
Ultra Helix 250	T2	12.0 [0.47"]	7.0 [0.28″]	7.6 [0.3″]	3.4 [0.14″]	_	_		0.8 [0.032"] 1.0 [0.039"] 1.2 [0.047"]
Ultra Helix 350	T1/T2	16.0 [0.63"]	8.00 [0.31″]	8.3 [0.33"]	2.6 [0.10"]	_	_		1.0 [0.039"] 1.2 [0.047"] 1.5 [0.059"]
Ultra Helix 350	VG	16.0 [0.63″]	_	_	4.22 [0.16"]	See next- page	1.5 [0.059″]		0.8 [0.031"] 1.0 [0.039"] 1.2[0.047"] 1.5 [0.059"]
Ultra Helix 500	T1/T2	23.8 [0.94"]	10.01 [0.394"]	7.4 [0.29"]	4.1 [0.162"]	_	_		1.0 [0.039"] 1.2 [0.047"] 1.5
Ultra Helix 500	VG	23.8 [0.94"]	_		4.68 [0.184"]	See next- page	1.50 [0.059″]		[0.059"] 1.8[0.070"]
Ultra Helix 500	VG Packaging	23.8 [0.937"]	_		_	4.00 [0.157"]	3.5 [0.138″]	D E E	1.2 [0.047"] 1.5 [0.059"] 1.8 [0.070"]

Ultra Helix Gate Detail Dimensions


	Gate Detail Dimensions (mm [in])								
Size	Tip Style	A*	В	с	D	E	F	Gate Detail	Std. Gate Dia
Ultra Helix 750	T1/T2	31.0 [1.22"]	19.06 [0 .7504"]	17.3 [0.68"]	5.91 [0.233"]	_	_		1.0 [0.039"] 1.5 [0.059"] 1.8
Ultra Helix 750	VG	31.0 [1.22"]	_	_	_	See below	2.00 [0.078"]	A E E	[0.070"] 2.5 [0.098″]
Ultra Helix 750	VG Packaging	31.0 [1.22"]	_	_	_	5.00 [0.197″]	3.6 [0.142″]	A E E	1.2 [0.047"] 1.5 [0.059"] 1.8 [0.070"]

* Effective interfacing diameter on manifold plates is 35.0 [1.377"]

Ultra Helix VG Tip Diameter					
Gate Dia	E				
0.8 (0.031″)	3.0 (0.118″)				
1.0 (0.039″)	3.0 (0.118″)				
1.2 (0.047″)	3.2 (0.126″)				
1.5 (0.059″)	3.5 (0.138″)				
1.8 (0.070)″	3.8 (0.150″)				
2.5 (0.098″)	4.5 (0.177″)				

Dimple review T1/T2

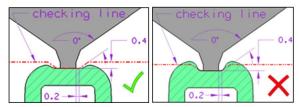
- Draw the checking line
- Check if the part is crossing the line

Valve Gate Nozzle Stacks

Valve Gate Detail Dimensions

	Gate Detail Dimensions (mm [in])								
Size	Tip Style	A	В	с	D	E	F	Gate Detail	Std. Gate Dia
Ultra 350	VG-P	16.0 [0.63"]	8.00 [0.31″]	8.3 [0.33"]	2.6 [0.10"]*	_	_		1.0 [0.039″] 1.2
Ultra 350	VG-T	16.0 [0.63″]	8.00 [0.31"]	8.3 [0.33"]	3 [0.12″]*	_	_		[0.047"] 1.5 [0.059"]
Ultra 350	VX-P	16.0 [0.63"]	11.0 [0.43"]	6.5 [0.26"]	4.22 [0.16"]	4.905 [0.19"]	1.5 [0.059″]		1.5
Ultra 350	VX-Т	16.0 [0.63″]	11.0 [0.43"]	6.5 [0.26"]	4.22 [0.16"]	4.905 [0.19"]	1.5 [0.059″]		[0.059″]
Ultra 500	VG-P	23.8 [0.94″]	10.01 [0.394"]	7.4 [0.29"]	4.1 [0.162"]	_	_		
Ultra 500	VG-T	23.8 [0.94"]	10.01 [0.394″]	7.4 [0.29″]	4.1 [0.162"]	_	_		1.0
Ultra 500	vx	23.8 [0.94"]	14.0 [0.55″]	6.52 [0.257″]	4.68 [0.184″]	4.905 [0.193″]	1.50 [0.059″]		1.0 [0.039"] 1.2 [0.047"] 1.5 [0.059"]
Ultra 500	VG-X	23.8 [0.94"]	12.01 [0.472″]	17.4 [0.69″]	7.48 [0.294"]	_	_		1.8[0.070″]
Ultra 500	VG-XX	23.8 [0.94"]	12.01 [0.472″]	22.4 [0.88″]	7.48 [0.294″]	_	_		

* Flexible measurement to be confirmed with original gate detail drawing Additional gate sizes available upon review


Valve Gate Detail Dimensions

	Gate Detail Dimensions (mm [in])									
Size	Tip Style	A*	В	с	D	E	F	G	Gate Detail	Std. Gate Dia
Ultra 750	VG-P	31.0 [1.22"]	19.06 [0.7504"]	17.3 [0.68″]	5.91 [0.233"]	_	_	_		
Ultra 750	VG-T	31.0 [1.22"]	19.06 [0.7504"]	17.3 [0.68"]	5.91 [0.233"]	_	_	_	A B D	1.0 [0.039"] 1.2 [0.047"] 1.5 [0.059"]
Ultra 750	VG-R (P) VG-R (T)	31.0 [1.22″]	19.06 [0.7504"]	25.0 [0.98″]	[0.444"]	_	_	_		[0.0357] 1.8 [0.070"] 2.5 [0.098"]
Ultra 750	vx	31.0 [1.22"]	24.7 [0.97″]	7.5 [0.30"]	_	9.005 [0.3545"]	2.00 [0.078"]	_		
Ultra 1000	VG (3 mm gate)	42.0 [1.65"]	25.415 [1.000"]	15.61 [0.615"]	7.32 [0.288"]	_	_	_		
Ultra 1000	VG (5 mm gate)	42.0 [1.65"]	25.415 [1.000"]	15.61 [0.615"]	6.75 [0.266"]	_	_	_		3.0 [0.118"] 5.0 [0.197"]
Ultra 1000	vx	42.0 [1.65″]	_	_	_	14.00 [0.551″]	3.95 [0.156"]		A F E	

* Effective interfacing diameter on manifold plates is 35.0 [1.377"]

Dimple review

- Draw the checking line
- Check if the part is crossing the line

Valve Gate Nozzle Stacks

Pitch Spacing

Nozzle Size	Valve Stem Actuation Options	Guidelines	Min Pitch Layout
Ultra 350 Ultra 500 Ultra Helix 250 Ultra Helix 500	Tight Access Valve Gate (PX)	The sprue min radius is 45mm [1.77"] The min drop-to-drop pitch is 25.4mm [1.00"] X and Y must be greater than 62.6mm [2.47"] Extended maintenance interval design to combat weepage prone resins 200psi (13.8bar) air pressure may be required for proper operation. Insufficient air pressure can lead to stem actuation problems, sticking, and or posting on the molded part	25.4mm [1.00] 25.4mm [1.772"] 25.4mm [1.772"] 25.4mm [1.00"]
Ultra 250			
Ultra 350		The sprue min radius is 45mm [1.77"] The min drop-to-drop pitch is 25.4mm [1.00"] X and Y must be greater than 62.6mm [2.47"]	25.4mm
Ultra 500	Small Pitch Valve Gate	200psi (13.8bar) air pressure may be required for proper operation. Insufficient air pressure can lead to stem actuation problems, sticking, and or posting on the molded part	R 45mm [1.772"]
Ultra Helix 350	(SX)	Certain applications will require air pressure greater than standard air pressure of 80-120psi [5.5-8.3bar]	
Ultra Helix 500		** Minimum channel size required for minimum pitch	[1.00"]

* Plunger style sprue bushing requires additional spacing. Review required

- Pitch shown is minimum and is based on minimum melt channel sizing. Specific part, resin, and filling requirements could dictate a larger pitch spacing requirement than shown
- Minimum distance between the outermost nozzle drop center to the outer side edge of the manifold plate is 75mm [2.95"] (*lf reduced distance is required, contact Husky*)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 100mm [3.93"]
- Minimum distance between the outermost nozzle drop center to the outer top and bottom edge of the manifold plate is 100mm [3.93"]. (If reduced distance is required, contact Husky.)
- Nozzles can be grouped in maximum clusters of 8 (except for Ultra 1000, here a cluster may contain a max of 4 nozzles)
- Systems greater than 16-drops layouts at minimum pitch spacing need to be reviewed by an Application Engineering
- Tighter pitch layouts may be available, contact Husky
- For UNIFY pitch spacing see UNIFY section

Pitch Spacing (continued)

Nozzle Size	Valve Stem Actuation Options	Guidelines	Min Pitch Layout
Ultra 350			
Ultra 500			[-50.0] [[1.97]]
Ultra 750		The sprue min radius is 50mm [1.97"] The min drop-to-drop pitch is 50mm [1.97"]	
Ultra Helix 350	Standard Valve Gate (LX)	If less than 2.5" (63.5 mm) contact Husky for review. Note:	
Ultra Helix 500		Extended Maintenance Interval (EMI) requires 78mm [3.07"] radial pitch around the sprue bushing to accommodate air plates	
Ultra Helix 750			
Ultra 350			59mm
Ultra 500			
Ultra 750	Large Piston Valve Gate	The sprue min radius is 65mm [2.559"] The min drop-to-drop pitch is 59mm [2.32"]	
Ultra Helix 350	(EX)	Taper valve stems are not recommended	00-00
Ultra Helix 750			

* Plunger style sprue bushing requires additional spacing. Review required

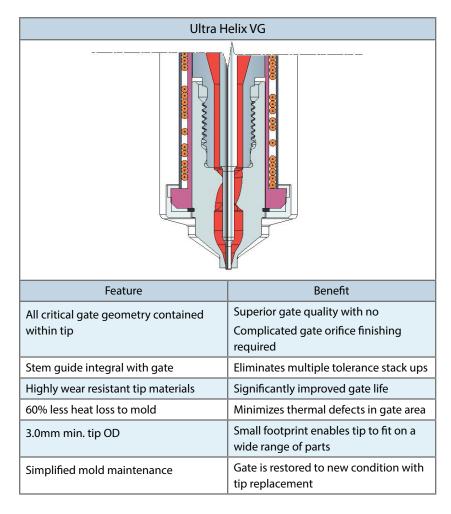
- Pitch shown is minimum and is based on minimum melt channel sizing. Specific part, resin, and filling requirements could dictate a larger pitch spacing requirement than shown
- Minimum distance between the outermost nozzle drop center to the outer side edge of the manifold plate is 71mm [2.79"] (If reduced distance is required, contact Husky)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 100mm [3.93"]
 - Minimum distance between the outermost nozzle drop center to the outer top and bottom edge of the manifold plate is 96mm [3.77"]. (If reduced distance is required, contact Husky.)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 100mm [3.93"]
- Nozzles can be grouped in maximum clusters of 8
 (except for Ultra 1000, here a cluster may contain a max of 4 nozzles)
- Systems greater than 16-drops layouts at minimum pitch spacing need to be reviewed by an Application
 Engineering
- Tighter pitch layouts may be available, contact Husky
- For UNIFY pitch spacing see UNIFY section

Pitch Spacing (continued)

Nozzle Size	Valve Stem Actuation Options	Guidelines	Min Pitch Layout
Ultra 1000	Valve Gate (No Airplate)	The sprue min radius is 72mm [2.83″] The min drop-to-drop pitch is 75mm [2.95″]	75mm [2.95] (2.95] (2.95] (2.83] (2.83] (2.83]
Ultra 1000	Valve Gate (Airplate)	The sprue min radius is 115mm [4.53"] The min drop-to-drop pitch is 121mm [4.76"]	

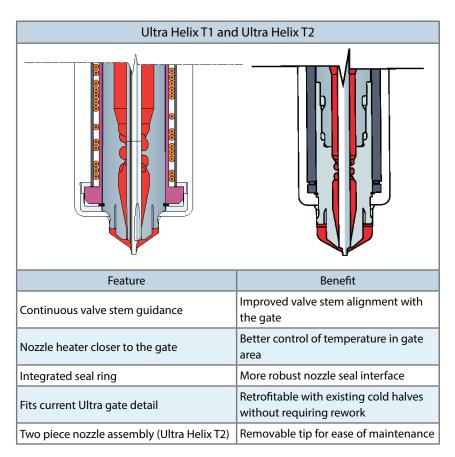
* Plunger style sprue bushing requires additional spacing. Review required

- Pitch shown is minimum and is based on minimum melt channel sizing. Specific part, resin, and filling requirements could dictate a larger pitch spacing requirement than shown
- Minimum distance between the outermost nozzle drop center to the outer side edge of the manifold plate is 71mm [2.79"] (If reduced distance is required, contact Husky)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 100mm [3.93"]
- Minimum distance between the outermost nozzle drop center to the outer top and bottom edge of the manifold plate is 96mm [3.77"]. (If reduced distance is required, contact Husky.)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 100mm [3.93"]
- Nozzles can be grouped in maximum clusters of 8 (except for Ultra 1000, here a cluster may contain a max of 4 nozzles)
- Systems greater than 16-drops layouts at minimum pitch spacing need to be reviewed by an Application Engineering
- Tighter pitch layouts may be available, contact Husky
- For UNIFY pitch spacing see UNIFY section


Ultra Helix Valve Gate Technology

Ultra Helix Valve Gate Technology

Ultra Helix Valve Gates use advanced technology to provide industry leading gate quality and longevity. Ultra Helix Valve gates provide excellent gate vestige for millions of cycles more than other valve gates.


Every Ultra Helix valve gate tip includes the Ultra Helix valve stem alignment technol-ogy. Ultra Helix, developed by Husky, aligns the valve stem to the gate throughout the entire molding cycle reducing wear and extending gate life.

The Ultra Helix VG tip also includes a precision gate integrated in the tip. The gate hole is precisely aligned to the valve stem.

Valve Gate Nozzle Stacks

Ultra Helix Valve Gate Technology

Ultra Helix 250 T2 Nozzle Stack

Ultra H	lelix VG
Feature	Benefit
Ultra Helix technology	Industry leading gate quality and longevity
Two piece nozzle assembly	Removable tip for ease of maintenance
12mm nozzle bore	Difficult to access gate location solution
15mm min pitch spacing	Tightest achievable pitch spacing with Ultra Sync
Extended maintenance interval actuation design	Improved performance and reduced time for maintenance intervals in weepage prone applications
Ultra 250 HTM Gen II heater	Improved thermal profile and consistency

The Ultra Helix 250 T2 solution was specifically developed to extend the benefits of Ultra Helix valve gate technology for small part applications with difficult to access gate locations.

- Compatible with Individual pneumatic, Ultra Sync-P and Ultra Sync-E valve stem actuation options
- Tight pitch spacing down to 25.4mm with Individual pneumatic and 15mm with Ultra Sync
- PX pneumatic actuation offers advantages when compared to current LX standard in weepage prone applications
 - Improved thermal management and the addition of a stem seal significantly extends the maintenance interval for weepage prone resins like TPE and PE.
 - Valve stems can be individually accessed for maintenance without removing the backing plate
- Available in 0.8mm, 1.0mm and 1.2mm standard gate
- Direct gate on small weight part

Valve Gate Nozzle Stacks

Ultra Helix Packaging VG

Feature	Benefit
All critical gate geometry contained within tip	Superior gate quality with no complex gate orifice finishing required
Stem guide integral with gate	Eliminates multiple tolerance stack ups
Highly wear resistant tip materials	Significantly improved gate life
4.0 mm OD Ultra Helix VG tip (U500) 5.0 mm OD Ultra Helix VG tip (U750)	Optimized thermal profile for short cycle times
Simplified mold maintenance	Gate is restored to new condition with tip replacement

The Ultra Helix Packaging VG tip was designed specifically for the unique demands of thinwall packaging applications. Contact Husky Sales Support for application assistance.

- Compatible with polyolefin resins only; polypropylene, polyethylene
- Available for Ultra Helix 500 and 750
- Available in 1.2mm, 1.5mm and 1.8mm gate.

Note: Tip outside diameter does not change with gate size like Ultra Helix VG. Contact Husky for gate detail.

• Compatible with high throughput and low cycle time applications typical of thinwall packaging

Ultra Helix Packaging VG Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		U500	U750
		UHP-VG	UHP-VG
ţ	Low	100	250
Viscosity	Medium	-	-
S	High	-	-

Material Compatibility

Resin	UHP-VG
ABS, MABS, ASA	\diamond
COC, COP	\diamond
EVA	\diamond
LCP	\diamond
РА	\diamond
PBT	\diamond
PC / PC Blends (excluding PC+PLA)	\diamond
PE (HDPE, MDPE, LDPE, LLDPE)	✓
PEEK	\diamond
PEI	\diamond
PET, Copolyester, PETG, PCTA, PCTG	\diamond
PLA	\diamond
PMMA, SMMA	\diamond
РОМ	\diamond
PP	✓
PPA	\diamond
PPS	\diamond
PS, GPPS, HIPS	\diamond
PSU, PPSU	\diamond
PVC-Flexible	\diamond
SAN	\diamond
Thermoplastic Elastomer	\diamond
(TPE, TPO, TPV, SBS, SEBS, TPU)	
Abrasive ≤ 15%	\diamond
Abrasive >15%	\diamond
Corrosive	\diamond

 \checkmark – Compatible

 \bigcirc – Contact HUSKY

Ultra Helix 250 Valve Gate Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		UH-VG
Viscosity	Low	10
	Medium	4
-	High	1

Material Compatibility

Resin	UH-VG
ABS, MABS, ASA	~
COC, COP	\diamond
EVA	~
LCP	\diamond
PA	\diamond
PBT	\diamond
PC / PC Blends (excluding PC+PLA)	\diamond
PE (HDPE, MDPE, LDPE, LLDPE)	✓
PEEK	\diamond
PEI	\diamond
PET, Copolyester, PETG, PCTA, PCTG	\diamond
PLA	\diamond
PMMA, SMMA	\diamond
POM	\diamond
PP	~
PPA	\diamond
PPS	\diamond
PS, GPPS, HIPS	~
PSU, PPSU	\diamond
PVC-Flexible	\diamond
SAN	\diamond
Thermoplastic Elastomer	~
(TPE, TPO, TPV, SBS, SEBS, TPU)	
Abrasive ≤ 15%	\diamond
Abrasive >15%	\diamond
Corrosive	\diamond

 \checkmark – Compatible

◇– Contact HUSKY

Ultra Helix / Ultra 350 Valve Gate Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		UH-VG	UH-T1/T2	VG	VX
Viscosity	Low	20	20	20	20
isco	Medium	12	12	12	12
>	High	5	5	5	5

Material Compatibility

Resin	UH-VG	UH-T1/T2	VG	VX
ABS, MABS, ASA	~	✓	✓	\diamond
COC, COP	~	✓	\diamond	\diamond
EVA	\diamond	✓	~	\diamond
LCP	\diamond	\diamond	\diamond	\diamond
PA	\diamond	\diamond	~	~
PBT	\diamond	\diamond	✓	\diamond
PC / PC Blends (excluding PC+PLA)	\diamond	\diamond	~	\diamond
PE (HDPE, MDPE, LDPE, LLDPE)	~	~	✓	\diamond
PEEK	\diamond	\diamond	\diamond	\diamond
PEI	\diamond	\diamond	\diamond	\diamond
PET, Copolyester, PETG, PCTA, PCTG	\diamond	✓	✓	\diamond
PLA	\diamond	\diamond	\diamond	\diamond
PMMA, SMMA	~	✓	✓	\diamond
POM	~	~	~	\diamond
PP	~	~	~	~
PPA	\diamond	\diamond	\diamond	\diamond
PPS	\diamond	\diamond	\diamond	\diamond
PS, GPPS, HIPS	~	✓	✓	✓
PSU, PPSU	\diamond	\diamond	\diamond	\diamond
PVC-Flexible	\diamond	\diamond	\diamond	\diamond
SAN	~	✓	\checkmark	✓
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	~	~	~	~
Abrasive ≤ 15%	~	✓	✓	✓
Abrasive >15%	\diamond	\diamond	~	~
Corrosive	\diamond	\diamond	~	~
· · · · · · · · · · · · · · · · · · ·		△ Contac		

 \checkmark – Compatible

◇– Contact HUSKY

Ultra Helix / Ultra 500 Valve Gate Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		UH-VG	UH-T1/TC	VG	VX	VG-X	VG-XX	VG-HP
Viscosity	Low	20	20	20	20	20	20	35
isco	Medium	12	12	12	12	12	12	18
>	High	10	10	10	10	10	10	12

Material Compatibility

Resin	UH-VG	UH-T1/T2	VG	VX	VG-X	VG-XX	VG-HP
ABS, MABS, ASA	~	✓	~	\diamond	\diamond	\diamond	~
COC, COP	~	✓	\diamond	\diamond	\diamond	\diamond	\diamond
EVA	\diamond	✓	~	\diamond	\diamond	\diamond	\diamond
LCP	\diamond	\diamond	\diamond	~	\diamond	\diamond	~
PA	~	~	\checkmark	\checkmark	\diamond	\diamond	\checkmark
PBT	~	~	~	~	\diamond	\diamond	~
PC / PC Blends (excluding PC+PLA)	✓	✓	✓	\checkmark	\diamond	\diamond	\checkmark
PE (HDPE, MDPE, LDPE, LLDPE)	~	~	\checkmark	✓	~	✓	✓
PEEK	\diamond	\diamond	\diamond	\diamond	\diamond	\diamond	✓
PEI	\diamond	\diamond	\diamond	\diamond	\diamond	\diamond	✓
PET, Copolyester, PETG, PCTA, PCTG	\diamond	~	\checkmark	\diamond	\diamond	\diamond	\diamond
PLA	\diamond	\diamond	\diamond	\diamond	\diamond	\diamond	\diamond
PMMA, SMMA	~	✓	\checkmark	\diamond	\diamond	\diamond	\checkmark
POM	~	✓	✓	✓	\diamond	\diamond	✓
РР	~	✓	✓	\checkmark	\diamond	\diamond	\checkmark
PPA	\diamond	\diamond	\diamond	✓	\diamond	\diamond	✓
PPS	\diamond	\diamond	\diamond	\checkmark	\diamond	\diamond	\checkmark
PS, GPPS, HIPS	~	~	~	~	\diamond	\diamond	~
PSU, PPSU	\diamond	\diamond	\diamond	\checkmark	\diamond	\diamond	\checkmark
PVC-Flexible	\diamond	\diamond	\diamond	\diamond	\diamond	\diamond	~
SAN	✓	✓	\checkmark	\checkmark	\diamond	\diamond	\checkmark
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	~	~	~	~	\diamond	\$	~
Abrasive ≤ 15%	~	✓	\checkmark	✓	\diamond	\diamond	\diamond
Abrasive >15%	\diamond	\diamond	~	~	\diamond	\diamond	\diamond
Corrosive	\diamond	\diamond	~	~	\diamond	\diamond	\diamond
(Compatible				Cont	a at LILICI		

 \checkmark – Compatible

◇– Contact HUSKY

Ultra Helix / Ultra 750 Valve Gate Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		UH-VG	UH-T1/T2	VG	VX	VG-R
ty	Low	250	250	250	250	250
Viscosity	Medium	150	150	150	150	150
Ż	High	50	50	50	50	50

Material Compatibility

Resin	UH-VG	UH-T1/T2	VG	VX	VG-R
ABS, MABS, ASA	~	✓	~	~	~
COC, COP	~	✓	~	\diamond	\diamond
EVA	\diamond	✓	\checkmark	\diamond	✓
LCP	\diamond	\diamond	\diamond	~	\diamond
PA	✓	✓	\checkmark	\checkmark	\diamond
РВТ	✓	✓	\checkmark	✓	\diamond
PC / PC Blends (excluding PC+PLA)	~	✓	\checkmark	\checkmark	\diamond
PE (HDPE, MDPE, LDPE, LLDPE)	\checkmark	✓	\checkmark	✓	✓
PEEK	\diamond	\diamond	\diamond	\diamond	\diamond
PEI	\diamond	\diamond	\diamond	\diamond	\diamond
PET, Copolyester, PETG, PCTA, PCTG	\diamond	✓	\checkmark	\diamond	✓
PLA	\diamond	\diamond	\diamond	\diamond	\diamond
PMMA, SMMA	✓	✓	✓	\diamond	✓
РОМ	✓	✓	✓	✓	✓
РР	✓	\checkmark	\checkmark	\checkmark	✓
PPA	\diamond	\diamond	\checkmark	✓	\diamond
PPS	\diamond	\diamond	\checkmark	\checkmark	\diamond
PS, GPPS, HIPS	~	✓	\checkmark	✓	✓
PSU, PPSU	\diamond	\diamond	\diamond	✓	\diamond
PVC-Flexible	\diamond	\diamond	\diamond	\diamond	\diamond
SAN	✓	✓	✓	✓	✓
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	~	✓	~	~	~
Abrasive ≤ 15%	~	\checkmark	~	~	~
Abrasive >15%	\diamond	\diamond	~	~	\diamond
Corrosive	\diamond	\diamond	\checkmark	✓	\diamond
\checkmark – Compatible \Diamond – Contact HUSKY					

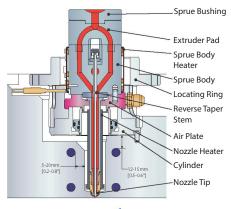
Ultra 1000 Valve Gate Application Guidelines

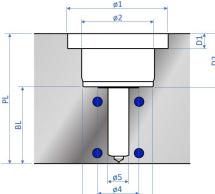
Max Throughput (g/sec.)

please refer to:

Section 1-4

		VG	VX	VX-X
ţ	Low	450	450	450
Viscosity	Medium	200	200	200
Š	High	80	80	80


Material Compatibility


Resin	VG	VX	VX-X
ABS, MABS, ASA	\checkmark	~	~
COC, COP	\checkmark	\diamond	\diamond
EVA	✓	\diamond	\diamond
LCP	\diamond	~	\diamond
PA	\checkmark	~	✓
PBT	\checkmark	~	~
PC / PC Blends (excluding PC+PLA)	\checkmark	~	✓
PE (HDPE, MDPE, LDPE, LLDPE)	✓	~	✓
PEEK	\diamond	\diamond	\diamond
PEI	\diamond	\diamond	\diamond
PET, Copolyester, PETG, PCTA, PCTG	~	\diamond	\diamond
PLA	\diamond	\diamond	\diamond
PMMA, SMMA	~	\diamond	\diamond
POM	\checkmark	~	~
PP	\checkmark	~	✓
PPA	\diamond	~	~
PPS	\diamond	~	✓
PS, GPPS, HIPS	\checkmark	~	~
PSU, PPSU	\diamond	~	✓
PVC-Flexible	\diamond	\diamond	\diamond
SAN	\checkmark	~	~
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	~	~	~
Abrasive ≤ 15%	\checkmark	~	~
Abrasive >15%	\checkmark	~	✓
Corrosive	\checkmark	~	~

 \checkmark – Compatible

◇– Contact HUSKY

Single Drops Single Cavity Valve Gate (SCVG)

ø3

- Ideal for low volume production and prototyping
- Installs direct in the injection side (platenside) of the mold's "A" plate
- Full range of valve gating options: Ultra 350, 500, 750 and 1000
- Available in Ultra Helix 350, 500 and 750
- Maximum temperature setpoint of 350°C [662°F] with mold cooling 75°C [167°F]

(This temperature rating may be higher or lower depending on the mold cooling temperature and specific nozzle tip. Reference nozzle tip specific temperature ratings.)

- Maximum Pressure is 1792 bar [26.000 psi]
- Stem Stroke added 7.3mm [0.29"]

NOTE for SCVG:

٠

- Preventative maintenance required at 500K cycles
 - o Disassemble
 - o Clean resin deposits
 - o Inspect seals
 - Inspect valve stem reverse taper seat and stem assembly for any noticeable wear
- All static and dynamic seals should be replaced every one million cycles

	Ultra 350 Ultra Helix 350	Ultra 500 Ultra Helix 500	Ultra 750 Ultra Helix 750	Ultra 1000
Ø5*	16.0mm	23.8mm	31.0mm	42.0mm
	[0.629"]	[0.937"]	[1.220"]	[1.653"]

* Requirements like "Reduced-Bore" or "Multiple Nozzle Heater will change the above values. Please always follow -the provided Gate-Detail-drawing.

Nozz	le size	Ø1	Ø2	Ø3	Ø4	Min D1	Max D1	Min D2	Max D2	Min PL	Max Std PL	Max XL* PL	Min BL	Max Std BL	Max XL* BL
	350									95mm [3.74"]	274mm [10.787"]	N/A	25mm [0.98"]	205mm [8.07"]	N/A
Ultra	500	150.0mm [5.906"]	108.0mm [4.25"]	104.04mm [4.096"]	50mm [1.969"]	12.28mm [0.483"]	21.85mm [0.86"]	69.5mm [2.736"]	79.07mm [3.113"]	92mm [3.62"]	251mm [9.881"]	330mm [12.99"]	22mm [0.86"]		260mm [10.23"]
5	750									108mm [4.25″]	267mm [10.551"]	335mm [13.18"]	39mm [1.53"]		265mm [10.43"]
	1000	170.0mm [6.693"]	134mm [5.28"]	130.04mm [5.120"]	70mm [2.756"]	12.25mm [0.482"]	21.85mm [0.86"]	87.55mm [3.447"]	97.15mm [3.825"]	125mm [4.92"]	245mm [9.64"]	N/A	37mm [1.45"]	157mm [6.18"]	N/A
DN	350									99.3mm [3.91″]	279.6mm [11.01"]	N/A	30mm [1.18"]	210mm [8.26"]	N/A
Ultra Helix VG	500	150.0mm [5.906"]	108.0mm [4.25"]	104.04mm [4.096"]	50mm [1.969"]	12.28mm [0.483"]	21.85mm [0.86"]	69.5mm [2.736"]	79.07mm [3.113"]	95mm [3.74"]	254mm [10.0"]	N/A	25mm [0.98"]	175mm [6.88"]	N/A
15	750									97.6mm [3.84"]	257mm [10.12"]	N/A	29mm [1.14"]	178mm [7.01"]	N/A
12	350									110mm [4.33"]	219mm [8.62"]	N/A	40mm [1.57"]	140mm [5.55"]	N/A
Ultra Helix T2	500	150.0mm [5.906"]	108.0mm [4.25"]	104.04mm [4.096"]	50mm [1.969"]	12.28mm [0.483"]	21.85mm [0.86"]	69.5mm [2.736"]	79.07mm [3.113"]	106.3mm [4.18"]	216mm [8.50"]	N/A	37mm [1.45"]	136mm [5.35"]	N/A
Ë	750									113.2mm [4.459"]	223mm [8.78"]	N/A	44mm [1.73"]	143mm [5.63"]	N/A
Ultra VG-R	750	150.0mm [5.906"]	108.0mm [4.25"]	104.04mm [4.096"]	50mm [1.969"]	12.28mm [0.483"]	21.85mm [0.86"]	69.5mm [2.736"]	79.07mm [3.113"]	115.5mm [4.547"]	275mm [10.82"]	N/A	46mm [1.81″]	196mm [7.71″]	N/A

Configure to Order (CTO)

Benefit:

- Available on-line via PRONTO-Direct E-Commerce
- Shorter lead time
- 2D installation drawings available on-line prior to order
- 3D model, gate details and BOM available with 24hrs* of order and complete information for a project

*For online submitted orders only

Engineering to Order (ETO)

Benefit:

- Custom nozzle lengths available
- Can support more demanding applications such as corrosive resins
- Standard and custom components

CTO Offerings

Nozzle Series	Sprue Inlet Diameter	Gating Style	PL-Dim Range	approx. BL-Dim*
U350	4 ^{*1} 0	VG	94.24mm - 244.58mm	25mm-165mm
0350	4 ^{*1} , 8	VX	94.24mm - 244.58mm	25mm-165mm
U500	4*1 o	VG	91.17mm - 251.4mm	22mm-172mm
0500	4 ^{*1} , 8	VX	91.24mm - 251.6mm	22mm - 172mm
		VG	107.57mm - 267.93mm	38mm - 188mm
U750	6.35 ^{*1} , 11.5	VG-R	115.46mm - 275.83mm	46mm - 196mm
		VX	97.55mm - 257.9mm	28mm - 178mm
U1000	14000		124.52mm - 254.81mm	37mm - 157mm
01000	11.5	VX	124.67mm - 254.96mm	37mm - 137mm

* Approximate BL-Values in the table are references which can deviate by ± 1 mm. Final BL-Value can be found on the Gate-Detail and 3D after finished engineering. BL available in the increment of 10mm within range.

 $^{\ast 1}$ Only available with flat contact surface

All Nozzle Series:

- Sprue interface seal off type (mm): flat, (SR)12.7, (SR)15.5, (SR)19.05, (SR)20, (SR)40
- Locating ring Ø (mm): 100, 101.3 (3,99"), 125
- Standard electrical connectors and electrical adapter box available as paid options

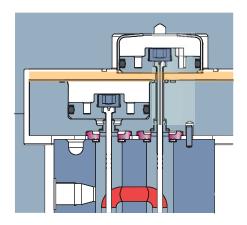
Single Drops-SCVG

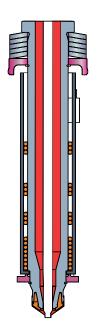
Configure to Order (CTO) vs Engineering to Order (ETO)

			,		
			CTO:	ETO:	Comment:
 Application Corrosi 			×	 ✓ 	Requires stainless steel components
			×	v v	Requires stainless steel components
High-Pi	emperature		×	▼ √	Requires high pressure components
Gating:	essure		~		
Series	Тір	Extra-Stock			
	VG	-	~	~	
	VX		√	~	
U350	UG-VG	_	x		
	UH-T2		×	✓ ✓	
	-	-	×		
	VG	-		 ✓ 	
	VG-X	-	×	√	
	VG-XX	-	×	~	
U500	vx	-	✓	✓	
0500	V/	5.0 mm	\checkmark	 ✓ 	
	UH-VG	-	×	✓	
	UH-PKG	-	×	~	
	UH-T2	-	×	~	
	VG	-	√	~	İ
	VG-R	-	√	~	
		-	√	✓	
	vx	3.2 mm	· ·	· ·	
U750	VA		· ·	· √	
		8.0 mm			
	UH-VG	-	×	 ✓ 	
	UH-PKG	-	×	✓	
	UH-T2	-	×	√	
	VG	-	✓	~	
	vx	-	✓	✓	
U1000	VA	11.0 mm	✓	✓	
		-	x	✓	
	VX-X	11.0 mm	×	✓	
Nozzle Heat	ter Technol	ogy:			
Series	Tech	nnology			
U350		НТМ	√	✓	Standard offering
0550		JNH	x x	× 🗸	Not available
U500		HTM JNH	× √	✓ ✓	Reduced Bore Standard offering
11750	HTM		×	 ✓	Reduced Bore
U750	UNH		√	\checkmark	Standard offering
U1000	HTM		√ 	√ 	Standard offering
Other:	l	JNH	×	x	Not available
Standard co	mponents		✓	✓	
Custom con			×	· ·	e.g. custom nozzle length,
Repeat-Proj			×	· · ·	
					$\sqrt{-2}$

Ultra 500 HP - High Pressure (VG/VX)

Ideal for Technical and Consumer electronics parts


For pressures from 26k psi to 43.5k psi


Duran Daman	Tip Style				
Pressure Range	VG HP	VX HP			
From 26k psi to 33k psi	~	~			
From 33k psi to 43.5k psi	Х	\checkmark			

- Compatible with standard LX or EX valve stem actuation or with SSA (Staggered Stem Actuation) for high pressure and close pitch
- Single piece VG housing/tip (housing and tip is a 2 piece design for VX)
- High strength steel housings
- High force spring package

- 250 lbs. stem force (compared to 150lbs. on LX)
- Pitch spacing as low as 28mm [1.10"]
- Enables 2 drops per cavity on small parts
- Sequential gating option
- Compatible with Ultra 500 VG/VX nozzles only
- Standard system shutheight (ie. Min. 60mm [2.36"] thick backing plate)

Valve Gate Air Circuit Recommendations and Machine Setup

The following are a set of recommendations that should be given to all customers purchasing a pneumatically actuated Husky Hot Runner. These are recommendations only; they are to get the best possible performance out of a pneumatically actuated valve gated Husky Hot Runner

No more than 36 cavities/nozzles per air circuit

Air supply should be clear and dry at a pressure between 80-120 psi [550-830 kPa]

- For thinwall parts and engineering resins the pressure should be between 100-120 psi [690-830 kPa]

A four-way air solenoid should be on the machine for every air circuit in the hot runner

Example: If Hot Runner has four separate air circuits, the machine should have four separate air solenoids controlling the four air circuits

Quick exhaust valves should be installed on both air lines to increase the speed at which the stems open and close

For air circuits with less than 24 cavities/nozzles, the air solenoids must have a mini-mum Cv valve of 1.5. If the air circuit is greater than or equal to 24 cavities/nozzles, then the machine solenoid must have a minimum Cv value of 3.0 (Standard Husky Machine value has Cv of 1.5)

If using a solenoid that has a Cv less than 3.5, regardless of number of cavities/nozzles a quick exhaust should be installed

The flow rate of air coming out of each machine solenoid should be at a minimum of 0.625 standard cubic feet per minute (scfm) per drop. This should be measured with air flowing though all of the solenoids on the machine at the same time

Air hoses running from the machine solenoids to the Hot Runner should have an internal diameter no smaller than 9.525mm [3/8"], and no larger than 19.05mm [$\frac{3}{4}$ "]

Air hoses should be as short as possible with a maximum length of 1.83m [6'], and should all be the same length

13.8bar [200psi] air pressure may be required for proper operation of SX & PX valve gated systems

Insufficient air pressure provided to SX piston can lead to stems seizing, sticking, and/ or posting on the molded part

Use a Husky Air Kit for optimal performance

UltraSync

In this section:

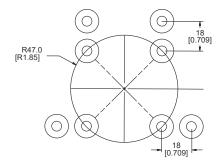
Page

Overview	3-1
UltraSync - Technology Comparison	3-2
Pitch Spacing	3-3
UltraSync-E	3-4
UltraSync-H	3-6
UltraSync-P	3-7
UltraSync-E with Altanium Controller	3-8

Overview

Benefits

- 100% synchronized valve stem movement
 - Stems are connected to an actuation plate
- Improved shot to shot and cavity to cavity consistency
- Minimum drop to drop pitch spacing (18mm, [0.709"])* with no sacrifice of closing force
- Simple installation and maintenance
- Increased process control with plate
 position sensing option


Features

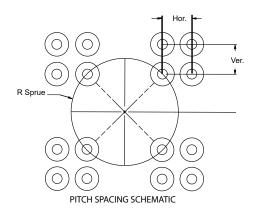
- Electric, pneumatic, and hydraulic actuation options**
- · Pitch spacing is the same for all three actuation methods
- Available for Ultra 350, 500, 750 and Ultra Helix 250, 350, 500, 750 nozzles with the same gating options as individual pneumatic actuation

Features	Individual	Plate Actuated
Constant stem force – PX, SX, LX, EX	Х	✓
Close pitch availability 18mm [0.70"]*	Х	✓
EX stem force	~	✓
In-machine maintenance and stem removal	~	✓
Automatic gate protection	Х	✓
Clean room environment acceptance	~	✓
Extended gate and component life	Х	✓
Energy savings	Х	✓
Sequential Gating	~	Х
Cold start protection	х	✓
Stem Shut-off — Taper or Plunger	Both	Plunger only

* 15mm (0.59") pitch spacing achievable with Ultra Helix 250

** Hydraulic actuation not available with Ultra Helix 250

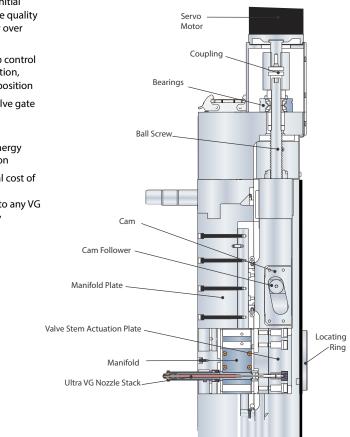
PITCH SPACING FOR U350 VG - UG


UltraSync — Technology Comparison

Description	Hydraulic	Pneumatic	Electrical
Repeatable shot-to-shot consistency	~	~	~
Constant stem force	~	~	~
Close pitch availability 18mm [0.70"]*	~	~	~
In-machine maintenance and stem removal	~	~	~
Clean room environment acceptance	Х	~	~
Valve stem protrusion control	Х	Х	~
Valve stem velocity profiling	X	х	~
Extended gate and component life	х	х	~
Energy savings	~	Х	~
Altanium controller integration	Х	Х	~
Minimum shutheight (Increase over individual VG)	~	~	~
Minimal or no change to plate size (HxW)	\checkmark	\checkmark	Х

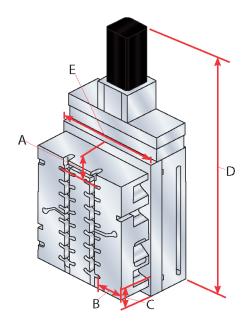
Pitch Spacing

Nozzle Size	Backup Pad Type				
	LX	SX	UX	РХ	EMI
Ultra 350	×	\checkmark	\checkmark	×	\checkmark
Ultra 500	×	\checkmark	×	×	\checkmark
Ultra 750	\checkmark	×	×	×	\checkmark
Ultra Helix 250	×	×	×	\checkmark	×
Ultra Helix 350	×	\checkmark	\checkmark	×	\checkmark
Ultra Helix 500	×	\checkmark	×	×	\checkmark
Ultra Helix 750	\checkmark	×	×	×	\checkmark


Backup Pad Type	Hc	Hor. Ve		Ver. R Sprue		orue
	[mm]	["]	[mm]	["]	[mm]	["]
LX	50.0	1.97	50.0	1.97	59.0	2.32
SX	27.5	1.08	27.5	1.08	47.0	1.85
UX	18.0	0.71	18.0	0.71	47.0	1.85
РХ	15.0	0.59	15.0	0.59	47.0	1.85
EMI	27.5	1.08	27.5	1.08	48.5	1.91

UltraSync-E

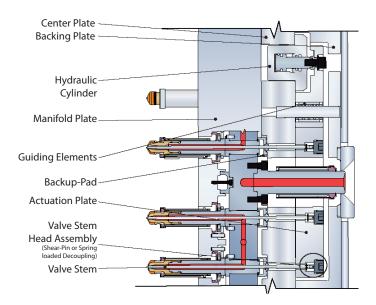
Benefits


- Up to a 5X extension of gate and stem longevity
 - Motion control minimizes the force exerted on stem and gate orifice when valve stems close
- Improved initial gate vestige quality and quality over time
- Closed loop control of stem motion, force, and position
- Cleanest valve gate technology available
- Reduced energy consumption
- Lowest total cost of ownership compared to any VG technology

Features

- Must be sold with an Altanium controller
 - Important molder information on connecting controller to the IMM is available from Husky
- Fewer moving parts compared to any other VG technology
- In press lubrication
- Valve stem protrusion adjustability
- Stem pull back before the mold opens
- Shut height increase of 35-50mm [1.35"-1.97"]

UltraSync-E

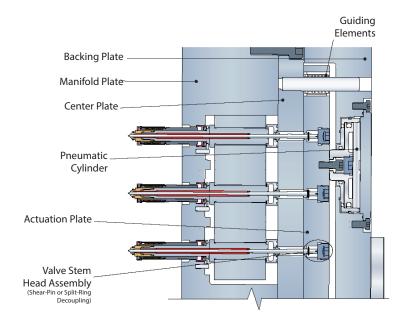

UltraSync E Plate and Space Requirements					
Dimension	Description	2-64 Drops	72-128 Drops		
A	Top row of drops to edge of mani- fold plate	100mm [3.93″]	100mm [3.93"]		
В	Outer column of drops to side edge of manifold plate	125mm* [4.92"]	160mm [6.29"]		
С	Bottom row of drops to edge of manifold plate	100mm [3.93"]	100mm [3.93"]		
D	Minimum assembly height	815-900mm [32"-35.4"]	1165mm [45.8"]		
E	Minimum assembly width	300mm [11.8″]	408mm [16"]		

* With clamp slots only. Direct bolting or additional cut outs require review Contact Husky factory for motor mounting on side or bottom

UltraSync-H

Benefits

- Plate size similar to individual VG
- Minimal shutheight increase over individual pneumatic VG, as low as 20mm [0.79"]
- Only requires one hydraulic core function from the IMM


Features

- No separate controller is required. The customer needs to have one hydraulic core function or one hydraulic valve gate function available (one outlet for opening and one outlet for closing)
- UltraSync H is not recommended for customers that do not have experience managing hydraulic fluid in their molding areas
- Uses more robust (leak resistant) hydraulic cylinders than the original design

UltraSync-P

Benefits

- Same set-up and operation as individual VG system including air flow and pressure requirements
- Clean room compatibility
- Only requires one pneumatic valve gate
- Easy cylinder seal replacement without HR disassembly

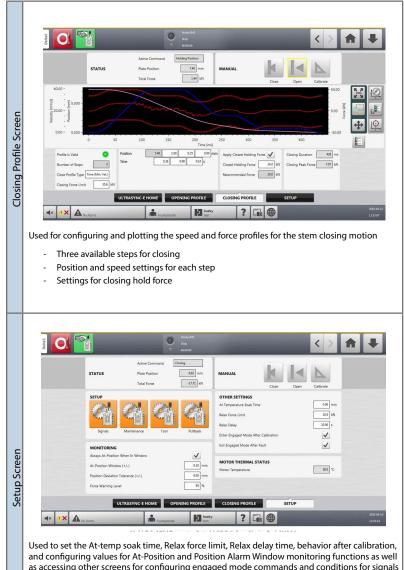
Features

- · No separate controller is required
- Air functions the same as individual VG actuation
- · Multiple sized cylinders are available for more pitch flexibility
- Increased shut height compared to individual VG 30-50mm [1.18"-1.96"]

Servo Control Enclosure		Control osure	Servo Control Enclosure
Configuration	Cavities	Operator Interface	Enclosure Layout
Low Cavity Single Axis (With or w/o Heats)	2 - 64	Delta5 or Matrix5	Integrated or Standalone
Low Cavity Dual Axis (With or w/o Heats)	2 - 64 per HR	Matrix5 Only	Integrated or Standalone
Low Cavity Single Axis (With or w/o Heats)	>64 - 128	Matrix5 Only	Integrated or Standalone
Low Cavity Dual Axis (With or w/o Heats)	>6 - 128 per HR	Matrix5 Only	Integrated or Standalone

Benefits of Integrated Temperature and Servo Control

- · Simple setup, control and monitoring using a single screen instead of two
- · Less floor space only one control unit required
- · Cost savings only one interface required
- Valve stem position, force and speed control
- · Valve stem control parameters are saved to a mold setup for easy recall
- Integrated damage protection if temperatures are not at setpoint, stem motion is prohibited
- Process data logging open/close time, open/close position and peak open/ close force


Controller Interface with Machine

- Interface signals are provided via a supplied cable that connects to the controller with color codes flying leads on the IMM end
- The following signals are required for stem operation:
- Integrated Temperature + UltraSync-E Control
 - E-Stop of IMM
 - IMM Safety Gates Closed
 - Open Valve Stems
 - Close Valve Stems (If configured)
- Standalone UltraSync-E Control
 - E-Stop of IMM
 - IMM Safety Gates Closed
 - External At-Temperature
 - Open Valve Stems
 - Close Valve Stems (If configured)
- Available Process Outside Limits output to the IMM cable to be purchased separately
- Bench mode connector plug available for operation without IMM interface

- All screens provide access to the following:
 - Control Mode Buttons: Manual, Disable and Auto controls
 - Command Buttons: Close, open and calibrate controls
 - Status Field: Displays current active command and plate position

		Defus			0 Husky BMS Stop C 00:0000	-		< >	†
			STATUS	Active Command Plate Position Total Force	Holding Position 7.40 mm 0.96 kN	MANUAL	Close Op	en Calibrate	
			READY CONDITIONS			STATUS Motor Position		7.40 mm	
			IMM E-Stop OK IMM Safety Gates Closed			Motor Position UltraSync Fault Active		740 mm	
			Controller E-Stop OK			PROCESS VALUES		•	
			At Temperature		•	Opening Duration		🕙 🛛 411 ms	
en			Soak Time Remaining		0.00 min	Closing Duration		🚺 🚺 ms	
cre			Soak Time Done		•	Open Position		7.40 mm	
Š			Servo Drive Enabled			Close Position		0.00 mm	
Home Screen			Calibration UK		•	Opening Peak Force Closing Peak Force			
윈						course the read			
			ULTRASY		OPENING PROFILE	CLOSING PROFILE	E SETUP		
		∢ × ∧ × ∧	Alarta	huskyte	ester husky	?			2018-04-13 12:32:59
	Dis	plays indica	tors for all re	eady cond	ditions and	position, fo	orce and fa	ult statuses	as well as the
			manu	al contro	ls for open	and close a	and calibrat	tion	
		Dottas			Hushy MS Stop			< >	A F
		Defas		Artine Command	5100 5100	I		< >	↑
		Sohas	STATUS	Active Command Plate Position	V Hunky Bills 250 000000 Holding Peakien 7.400 mm	MANUAL	k I	< >	↑
		Detres	STATUS		Step 05:00:00 Holding Position	MANUAL	Ciose Cy	Calibrate	
		Currs	STATUS	Plate Position	 Step co.co.co Holding Position 7.40 mm 	MANUAL	Cose Cy		
		Media media	STATUS	Plate Position	 Step co.co.co Holding Position 7.40 mm 	MANUAL	Cose or	pen Calbrate	
		Num : 10 5.000 -	STATUS	Plate Position	 Step co.co.co Holding Position 7.40 mm 	MANUAL	Ciste Or	pen Calibrate	
		Velocity (mm/s) 1000 - 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10	STATUS	Plate Position	 Step co.co.co Holding Position 7.40 mm 	MANUAL	Cese or	peri Calbrate	
en		Veecol funn(s) Veecol	STATUS	Plate Position	See automotion Heiding Paulian (33) SN	200 250	Cest C	pen Calbrate	
creen		Veecol funn(s) Veecol		Plate Position Total Force	x Sao discos Velidarg Paulan 200 mm 55 sV	200 250	300	Calbrate Calbrate 	
e Screen		Veecol funn(s) Veecol		Plate Position Total Force	2 Sup 300 140ddrg Prakton 720 mm 335 sN 150 Time (md) 309 300 300 300 300 300 300 300	200 250 6.30 7.40 mm 800 5.0 mm/s	300 Opening Duration	en Calizate 330	
offle Screen		Veecol funn(s) Veecol	0 50 Profile is Valid Number of Steps	Plate Position Total Force	₹ 200 2000 Heiding Peakin 200 100 100 Time (m) 000 100 100 100 100 100 100 10	200 250	300 Opening Duration	Peri Caltrate Caltrate 350 	
Profile Screen		Veecol funn(s) Veecol	0 50 Protie is Vald Number of Steps Open Protie Type Steret Opening Force Limit	Place Position Total Force 100 Position Speed Acceleratio Discleration	₹ 200 2000 Fetting Peaker 7.40 mm 5.55 54 150 Tome (m) 150 Tome (m)	200 250 6.00 7.00 mm/s 200 500 mm/s 200 500 mm/s 200 500 mm/s	Dpering Duration	Calibrate 5000 5	
ng Profile Screen		Veecol funn(s) Veecol	0 50 Protie is Vald Number of Steps Open Protie Type Steret Opening Force Limit	Plate Position Total Force	₹ 200 2000 Heiding Peakin 200 100 100 100 100 100 100 100	200 250 6.00 7.00 mm/s 500 500 mm/s 500 500 mm/s	Dpering Duration	Calibrate 5000 5	
ning Profile Screen		Veecol funn(s) Veecol	Profile is Valid Number of Steps Open Profile Type Stered Open Profile Type Stered Opening Force Limit	Plane Position Testa Force 100 100 2 100 2 2 2 2 2 2 2 2 2 2 2 2 2	2 200 2000 Petersen 7 20 mm 5 20 350 350 350 Time (m) 0 0 0 0 0 0 0 0 0 0 0 0 0	200 250 6.00 7.00 pm 803 50 pm/s 200 pm	Dpering Duration	Calibrate 5000 5	
pening Profile Screen		0.000 - 0.000 + 0.000	Profile is Valid Number of Steps Open Profile Type Stered Open Profile Type Stered Opening Force Limit	Place Position Total Force 100 Position Speed Acceleratio Discleration	2 200 2000 Petersen 7 20 mm 5 20 350 350 350 Time (m) 0 0 0 0 0 0 0 0 0 0 0 0 0	200 250 6.00 7.00 pm 803 50 pm/s 200 pm	200 Opening Duration Opening Peak Force E SETUP	Calibrate 5000 5	
Opening Profile Screen	Usee	End (1000) 1000 − 0.000 − 0.00 − 0.000 − 1000 − 0.000 −	Profile is Valid Number of Steps Open Profile Type Stered Open Profile Type Stered Opening Force Limit	Pase Poston Total Fore 100 Poston Speed Received Received	2 2 200 2000 Periodeg Pocietor 7 20 Prof 3 20 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	200 250 6.0 7.0 mm 50 50 mm/s ² 50 50 50 50 50 50 50 50 50 50 50 50 50 5	200 Opening Duration Opening Peak Force	pon Calbrais Calbrais 300 300 	
Opening Profile Screen	User	extension of the second	Profile is Valid Number of Stops Open Profile Type Steret Open Profile Type Steret Opening Force Linkt ULTRASS Atoms ULTRASS	Plate Fostion Total Form 100 100 100 Plattom Speed Accession Plattom Speed Accession Plattom Speed Accession Plattom Speed Accession Plattom Speed Accession Plattom Speed Accession Plattom Plattom Speed Accession Plattom Platto	Source of the second seco	200 250 6.0 7.0 mm 50 50 mm/s ² 50 50 50 50 50 50 50 50 50 50 50 50 50 5	200 Opening Duration Opening Peak Force	pon Calbrais Calbrais 300 300 	
Opening Profile Screen	Usee	d for config Two availa	Deen Profile Type Steed Open Profile Type Steed Open Profile Type Steed Opening Force Link Utracks Atoms	Plate Footboor Total Form 100 Plate 100 Plate	Boy Boy Boy Boy Boy Boy Boy Boy Boy	200 250 6.0 7.0 mm 50 50 mm/s ² 50 50 50 50 50 50 50 50 50 50 50 50 50 5	200 Opening Duration Opening Peak Force	pon Calbrais Calbrais 300 300 	
Opening Profile Screen	Usee	d for config Two availa	Profile is Valid Number of Stops Open Profile Type Steret Open Profile Type Steret Opening Force Linkt ULTRASS Atoms ULTRASS	Plate Footboor Total Form 100 Plate 100 Plate	Boy Boy Boy Boy Boy Boy Boy Boy Boy	200 250 6.0 7.0 mm 50 50 mm/s ² 50 50 50 50 50 50 50 50 50 50 50 50 50 5	200 Opening Duration Opening Peak Force	pon Calbrais Calbrais 300 300 	
Opening Profile Screen	Usee	d for config Two availa	Deen Profile Type Steed Open Profile Type Steed Open Profile Type Steed Opening Force Link Utracks Atoms	Plate Footboor Total Form 100 Plate 100 Plate	Burger Burger	200 250 6.0 7.0 mm 50 50 mm/s ² 50 50 50 50 50 50 50 50 50 50 50 50 50 5	200 Opening Duration Opening Peak Force	pon Calbras 350 350 350 350 350 350 350 350 350 350	

Controller Valve Stem Operation Screen

and configuring values for At-Position and Position Alarm Window monitoring functions as well as accessing other screens for configuring engaged mode commands and conditions for signals used for permitting calibration or disengaging, configuring the maintenance position on Gen 1 systems, setting up the stem pullback position and selecting the number of cavities and motor type.

Individual Servo Valve Gate

In this section:

Page

4-1	Overview
4-2	Features
4-3	Technology Comparison
4-4	Benefits
4-5	ISVG with Altanium Controller

Overview

Individual Servo Valve Gate (ISVG)

Complete valve stem motion control for improved molded part quality and consistency

- Individual valve stem electric servo actuation
- 100% synchronized valve stem movement
- Profiled motion for each valve stem
- Improved shot to shot and cavity to cavity consistency
- Sequential gate opening and closing
- Compact size servo actuator design to minimize shut height
- Available in Hot Runner and Manifold System configurations
- Must be sold with an Altanium ISVG controller

Features

Low Cavitation - Up to 8 Drops

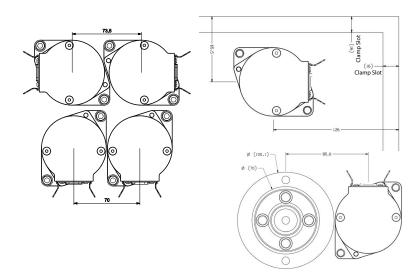
- Gating styles available VG, VX, Ultra Helix VG/T1/T2
- Plunger only

Nozzle Sizes Available

- Ultra 350, 500, 750
- Ultra Helix 350, 500, 750

Applications where LX and EX valve stem actuation would be used

Ability to process with part fill pressure up to 179.2 MPa [26K psi] and mold temperature up to 100°C


Max melt temperature 340°C

- Stem stroke up to 9.5mm (0.37")
- Valve stem position adjustment +/- 0.01mm
- Maximum 100mm/sec (3.94in/sec) speed
- Dependent on the stroke and profile setup

Shut Height

• Minimum shut height 220mm (8.66")

Pitch Spacing

Technology Comparison

Material Compatibility

Description	ISVG	UltraSync-E
Repeatable shot-to-shot consistency	~	✓
Constant stem force	~	√
Valve stem velocity profiling	~	√
Valve stem protrusion control	~	✓
Sequential gating	~	✓
Independent gate open/close	~	✓
Individual stem shut off	~	√
Minimum pitch	70mm (2.76″)	18mm (0.71″)
In-machine maintenance and stem removal	~	✓
Automatic gate protection	~	✓
Clean room environment acceptance	~	х
Extended gate and component life	~	✓
Energy savings	~	✓
Cold start protection	~	✓
Stem shut off	Plunger only	Plunger only
Altanium controller integration	~	\checkmark

Benefits

- Extension of gate and stem longevity reducing downtime and maintenance costs
 - Valve stem velocity profiling minimizes the force exerted on the stem and gate orifice at close
 - When matched with Ultra Helix valve gate technology significantly extends gate and stem life
- Closed loop control of stem motion, force and position
 - Immediate valve stem response to signal
 - Precise and repeatable valve stem positioning
 - Traceable proof of valve stem motion
- Synchronized actuation improves balance and part quality repeatability
- Independently gate opening and closing
 - Sequential actuation with greater precision and faster response time provides greater control and flexibility than pneumatic or hydraulic options
 - Two-shot molding Open and close each stem based on injection unit
 - Family molding fill control balance different part weights
 - Multi-gate molding Control of flow front from each gate for precise and repeatable weld line positioning and cavity balance control
 - Multi-material or large parts can be molded with valve stem sequencing.
- Valve stem protrusion adjustability
 - Each valve stem can be individually calibrated to minimize the protrusion without impact to gate quality
 - Protrusion can be adjusted during operation
- Individual stem shut off
- Cleanest valve gate technology available

ISVG with Altanium Controller

ISVG Controller w/Integrated **Temperature Control**

Matrix5 ISVG controller available in two configurations

- Standalone = ISVG control only -
- Integrated = ISVG control + Hot runner temperature -

(Both configurations available in 4 or 8 axis options - 1 axis controls 1 valve stem)

Features

- Setup valve stems to run in synchronized mode or sequential mode
- Opening and Closing profile screens for setting stem position, speed, acceleration and deceleration and viewing graphs of individual stem profiles
- Historical and run-time charts for process data logging open/close time, open/ close position and peak open/close force for up to 100,000 cycles
- Cycle graph screen for viewing an overlay of all stem motion for the full cycle
- Integrated At-Temperature feature to prevent stem actuation until mold is up to temperature
- 22 user configurable digital inputs and 15 user configurable digital outputs for triggering valve stem movement and interlocks to the IMM
- 8 user configurable analog inputs for sequencing off IMM screw position or other analog instrumentation in the mold
- 2 channel safety relays for E-Stop and Safety Gate signals
- Bench mode plug for servicing HR outside the IMM
- Change air filter reminder feature with enclosure overtemperature alarm
- Security features to lock out functionality at login based on user permissions
- Optional linear position transducer (LPT) available for triggering stem motion based on IMM screw position

Benefits of Integrated Temperature and Servo Control

- Simple setup, control and monitoring using a single operator interface
- · Less floor space only one control unit required
- Cost savings only one interface required
- Control speed, stroke, force and time of valve stem actuation to reduce mechanical stress on the mold and extend gate life
- Valve stem control parameters and heat setpoints are saved to a mold setup for easy recall
- Integrated damage protection If mold temperatures are not at setpoint, stem motion is prohibited
- Monitor servo performance and alarms for force, speed and position deviations for immediate notification if anything goes out of specification
- Servo actuator over temperature protection to prevent damage to servo motor
- Position, duration and force data collection for up to 100,000 cycles providing instant access to stem motion performance for troubleshooting and part quality tracking
- Technology gives molders the ability to determine which area of a cavity fills first and how quickly, delivering unprecedented control over weld or knit line positioning
- Other benefits include mechanical balancing of family molds and ability to use a progressive fill technique

Controller Interface with Machine

Interface signals are provided through supplied X200 and X201 cables with flying leads on the IMM end

The following signals are required for stem operation:

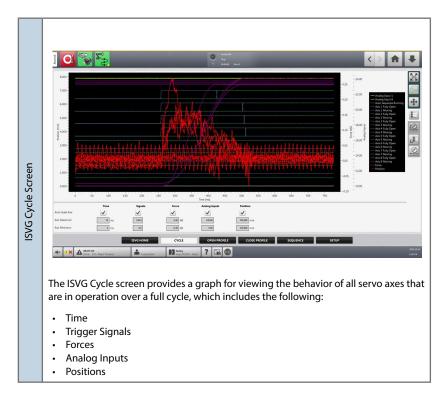
- Integrated Temperature + ISVG control
 - E-Stop of IMM (2 Channel)
 - IMM Safety Gate (2 Channel)
 - Open Valve Stems signal
 - Close valve stems (If configured)
- Standalone ISVG control
 - E-Stop of IMM (2 Channel)
 - IMM Safety Gate (2 Channel)
 - External At-Temperature
 - Open Valve Stems
 - Close valve stems (If configured)

Bench mode connector included for operation when not connected the IMM interface Optional analog input cable available

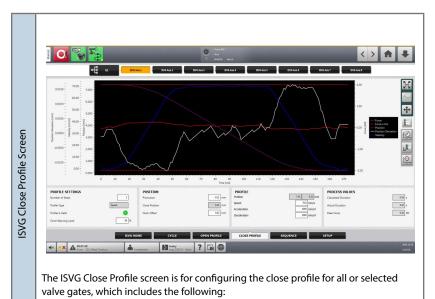
ISVG with Altanium Controller

Controller Valve Stem Operation Screens

The individual servo valve gate controller screens give you operational control of the following:


- Set operation of one or more axes •
- Put axes into groups •
- Enter user-specified names of axes and groups •
- Calibrate one or more axes
- Control manual axis movement
- Set limits for axes (minimum/maximum positions, target positions, speeds, acceleration/deceleration)
- Monitor open and close profiles
- · View and change motion profiles

The ISVG Home screen gives high-level information of each axis, which includes the following:


- Status, current force, and current position
- A graphical indicator shows the axes' positions as they cycle •
- Command buttons to manually calibrate, open, and close each axis

	NKKAS	-			< > 俞 基
	Ar Te Ar Te Soak	TEMPERATURE Imperature Imperature Seak Time 0.00 min In Time Remaining 0.00 min I Time Complete	PERMIT AUTO HODE Al Ares Calitored O No Faults O Ready For Auto Mode	GROUP NAMES Group 1 Group 2 Group 3 Group 4	4 6 6
	ю	T RUNNER CONFIGURATION	AUTO SEQUENCE Auto Sequence Start Trigger Auto Sequence Burstion Auto Sequence Duration 200 3		
ISVG Setup Screen	4 AX America test test	BNG BOMP Designed Australiant		SEQUENCE SITU	n na Tara
	The ISVG Setup following:	screen is used to	configure the servo	axes, which i	ncludes the
	Enter user-sMonitor the	•		-	-

- Three available steps for opening
- Position, speed, acceleration and deceleration settings for each step
- Force warning level setting for the opening profile

- Three available steps for closing
- Position, speed, acceleration and deceleration settings for each step
- Force warning level setting for the closing profile

Controller Valve Stem Operation Screens

· Other setpoints that start the open/close movement operations for all axes

In this section:

Page

5-1 Key Advantage
5-2 Typical Vestige Geometry
5-3 Gate Detail Dimensions
5-6 Pitch Spacing
5-8 Ultra 250 Hot Tip-Application Guidelines
5-9 Ultra 350 Hot Tip-Application Guidelines
5-10 Ultra 500 Hot Tip-Application Guidelines
5-11 Ultra 750 Hot Tip-Application Guidelines
5-12 Ultra 1000 Hot Tip-Application Guidelines
5-13 Single Drops
5-14 Configure to Order (CTO)
5-14 Engineering to Order (ETO)
5-15 Single Drops-Hot Sprue
5-18 Ultra 750 HT-S6 "The Pioneer Nozzle for Closure Hot Runners"
5-19 Energy Savings Package (ESP) for HDPE-Closures Hot Runners
5-20 Ultra 750 Ultra Packaging Nozzle (UP)

Key Advantages

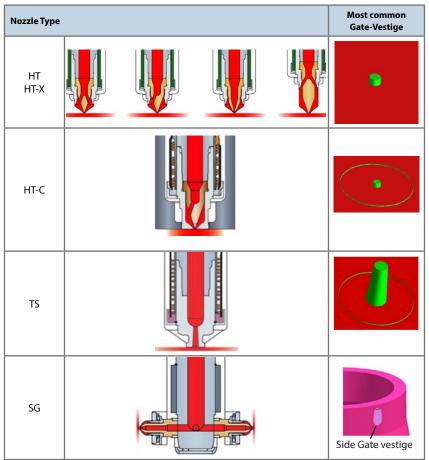
UltraSeal

- 3 yr. guaranteed leakproof operation
- Pre-loads nozzle to manifold
- Minimizes plate deflection/bowing

Wide Operating Window

- Wide temperature ranges without stringing or freez-off
- Faster cycle times

Wear Resistant Tip Inserts


 Optional wear resistant tip for abrasive materials

Ease of Maintenance

• Tips, nozzle heaters & T/Cs replaceable in the press

Typical Vestige Geometry

	Performance Guidelines						
Vestige	Semi-Crystalline Materials (POM, PA, PBT, PET, etc.)	Vestige Height = 1/3 Gate Diameter					
	Amorphous Materials (PC, PS, ABS, PMMA, etc.)	Vestige Height = 1/2 Gate Diameter					
	Filled and reinforced materials	Vestige Height=1/2 Gate Diameter or more					
	5% - 10% Occurrence: HDPE, POM						
	10% - 15% Occurrence: PA, LDPE						
Stringing	15% - 20% Occurrence: PP, PS, PC, PMMA, ABS						
	General Guideline: Stringing can occur on any hot tip system 20% Occurrence stringing can be expected Risk of stringing increases with faster cycle times						

Hot Tip Nozzle Stacks

Hot Tip Nozzle Stacks

Gate Detail Dimensions

			Gate De	tail Dim	ensions	(mm [ir	ן)	
Size	Tip Style	A	В	с	D	E	F	Gate Detail
Ultra 250	ΗT	12.5 [0.49"]	7.0 [0.2756"]	7.6 [0.30″]	3.4 [0.13"]	_	_	
Ultra 250	HT-X	12.5 [0.49″]	7.0 [0.2756"]	20.1 [.79″]	_	_	_	
Ultra 350	HT	16.0 [0.63"]	8.00 [0.31″]	8.3 [0.33"]	3.474 [0.137″]	_	_	
Ultra 350	HT-X	16.0 [0.63″]	8.00 [0.31″]	21.8 [.86"]	3.474 [0.137″]	_	_	
Ultra 350	TS	16.0 [0.63″]	11.0 [0.43″]	9.5 [0.374″]	5.71 [0.225″]	4.905 [0.19"]	3 [0.118"]	
Ultra 500	HT	23.8 [0.94"]	10.012 [0.394"]	7.0 [0.28″]	3.93 [0.155″]	_	_	
Ultra 500	HT-X	23.8 [0.94"]	10.012 [0.394"]	17.0 [0.67″]	7.1 [0.28″]	_	—	
Ultra 500	САР	23.8 [0.94″]	14.00 [0.551″]	6.40 [0.252″]	3.25 [0.128″]	9.005 [0.354"]	1.50 [0.059"]	
Ultra 500	TS	23.8 [0.94"]	_	6.67 [0.263"]	_	4.905 [0.193″]	3.00 [0.118"]	

* Flexible measurement to be confirmed with original gate detail drawing Additional gate sizes available upon review

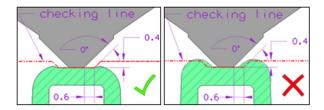
Gate Detail Dimensions

	Gate Detail Dimensions (mm [in])								
Size	Tip Style	A*	В	с	D	E	F	G	Gate Detail
Ultra 750	нт	31.0 [1.22"]	21.0 [0.83"]	13.5 [0.531"]	5.34 [0.210"]	14.01 [0.5516"]	_	9.1 [0.358"]	
Ultra 750	нт-х	31.0 [1.22"]	21.0 [0.83"]	25.0 [0.984"]	5.34 [0.210"]	13.80 [0.543"]	_	21.10 [0.831"]	
Ultra 750	САР	31.0 [1.22"]	21.0 [0.83"]	13.0 [0.512"]	_	14.005 [0.5514"]	3.50 [0.138"]	_	
Ultra 750	TS	31.0 [1.22"]	_	8.5 [0.33"]	_	9.005 [0.3545"]	4.2 [0.165"]	_	E E
Ultra 750	HT-S6	31.0 [1.22"]	_	26.0 [1.02"]	11.28 [0.444"]	_	_	_	
Ultra 750	SideGate	16 [0.63']	7 [0.27"]	6.38 [0.25"]	4.234 [0.167"]	_	_	_	
Ultra 750	SideGate (Angled)	16 [0.63']	7 [0.27"]	8.38 [0.33"]	5.134 [0.202"]	_	_	_	
Ultra 750	SideGate (Inline)	16 [0.63′]	7 [0.27″]	6.38 [0.25"]	4.234 [0.167"]	_	_	_	
Ultra 750 UP	нт	31.0 [1.22"]	19.06 [0.750″]	26.0 [1.02"]	11.28 [0.444″]	_	_	_	

* Effective interfacing diameter on manifold plates is 35 mm [1.377"]

Hot Tip Nozzle Stacks

Hot Tip Nozzle Stacks


Gate Detail Dimensions

	Gate Detail Dimensions							
Size	Tip Style	A*	В	с	D	E	F	Gate Detail
Ultra 750 UP	HT-X	31.0 [1.22″]	19.06 [0.750″]	32.8 [1.29"]	22.8 [0.9″]	_	_	
Ultra 1000	HT	42.0 [1.65"]	18.010 [0.709″]	13.0 [0.51"]	6.30 [0.248"]	_	_	
Ultra 1000	CAP	42.0 [1.66″]	_	_	_	20.008 [0.787″]	5.75 [0.226″]	
Ultra 1000	TS	42.0 [1.65"]	_	_	_	11.0 [0.433″]	5.25 [0.207″]	A D D

* Effective interfacing diameter on manifold plates is 35 mm [1.377"] (Ultra 750 only)

Dimple review

- Draw the checking line
- Check if the part is crossing the line

Pitch Spacing

Nozzle Size	Guidelines	Min Pitch Layout
Ultra 250	The sprue min radius is 31.8mm [1.25"] The min drop-to-drop pitch is 15 mm [0.59"]	а (С) (С) п и (С) (С) п п (С) (С) п и (С) (С) (С) п п (С) (С) п и (С)
Ultra 350	The sprue min radius is 31.8mm [1.25″] The min drop-to-drop pitch is 18mm [0.71″]	Image: Constraint of the second se
Ultra 500	The sprue min radius is 32.0 mm [1.26″] The min drop-to-drop pitch is 25.4mm [1.00″]	© © ©

* Plunger style sprue bushing requires additional spacing. Review required

- Pitch shown is minimum and is based on minimum melt channel sizing and layout. Specific
 part, resin, and filling requirements could dictate a larger pitch spacing requirement than
 shown
- Minimum distance between the outermost nozzle drop center to the outer side edge of the manifold
 plate is 71mm [2.79"] (If reduced distance is required, contact Husky)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 71mm [2.79"]
 - Minimum distance between the outermost nozzle drop center to the outer top and bottom edge of the manifold plate is 96mm [3.77"]. (If reduced distance is required, contact Husky.)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 96mm [3.77"]
- Systems greater than 16-drops layouts at minimum pitch spacing need to be reviewed by Application
 Engineering
- Nozzles can be grouped in maximum clusters of 8
 (except for Ultra 1000, here a cluster may contain a max of 4 nozzles)
- Tighter pitch layouts may be available, contact Husky

Hot Tip Nozzle Stacks

Pitch Spacing (continued)

Nozzle Size	Guidelines	Min Pitch Layout
Ultra 750		R 40.4mm* [1.6"]
Ultra 750 UP	The sprue min radius is 40.4 mm [1.60"] The min drop-to-drop pitch is 44.5mm [1.75"]	44.5mm 1.75°]
Ultra 750 SG	The sprue min radius is 40.4 For Side-Gate applications, SideGate section	
Ultra 1000	The sprue minimum radius is 50.0 mm [1.97"] The min drop-to-drop pitch is 61mm [2.40"]	61mm [2.4"] (()) (()) (()) (()) (()) (()) (()) ((

* Plunger style sprue bushing requires additional spacing. Review required

- Pitch shown is minimum and is based on minimum melt channel sizing and layout. Specific
 part, resin, and filling requirements could dictate a larger pitch spacing requirement than
 shown
- Minimum distance between the outermost nozzle drop center to the outer side edge of the manifold plate is 71mm [2.79"] (If reduced distance is required, contact Husky)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 71mm [2.79"]
- Minimum distance between the outermost nozzle drop center to the outer top and bottom edge of the manifold plate is 96mm [3.77"]. (If reduced distance is required, contact Husky.)
 - For non-PRONTO systems Application Engineering review recommended for distance less than 96mm [3.77"]
- Systems greater than 16-drops layouts at minimum pitch spacing need to be reviewed by Application Engineering
- Nozzles can be grouped in maximum clusters of 8
 (except for Ultra 1000, here a cluster may contain a max of 4 nozzles)
- Tighter pitch layouts may be available, contact Husky
- For Side-Gate applications, please refer to the Ultra SideGate section (U750 only)
- For UNIFY pitch spacing see UNIFY section

Ultra 250 Hot Tip Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		HT	HT-X
ť	Low	10	10
Viscosity	Medium	4	4
	High	1	1

Material Compatibility

Resin	HT	HT-X
ABS, MABS, ASA	~	\diamond
COC, COP	\diamond	\diamond
EVA	\diamond	\diamond
LCP	\diamond	\diamond
PA	✓	\diamond
PBT	\diamond	\diamond
PC / PC Blends (excluding PC+PLA)	✓	\diamond
PE (HDPE, MDPE, LDPE, LLDPE)	✓	✓
PEEK	\diamond	\diamond
PEI	\diamond	\diamond
PET, Copolyester, PETG, PCTA, PCTG	\diamond	\diamond
PLA	\diamond	\diamond
PMMA, SMMA	\diamond	\diamond
POM	\diamond	\diamond
PP	✓	✓
PPA	\diamond	\diamond
PPS	\diamond	\diamond
PS, GPPS, HIPS	✓	✓
PSU, PPSU	\diamond	\diamond
PVC-Flexible	\diamond	\diamond
SAN	✓	\diamond
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	~	\diamond
Abrasive ≤ 15%	✓	\diamond
Abrasive >15%	\diamond	\diamond
Corrosive	\diamond	\diamond
		-

✓– Compatible

◇– Contact HUSKY

- Independent temperature control is required for all Ultra 250 tips (group control is not supported)
- Minimum $\triangle T = 140^{\circ}C [284^{\circ}F]$ (melt to mold temperature)

Ultra 350 Hot Tip Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		HT	HT-X	TS
~	Low	15	15	15
Viscosity	Medium	8	8	8
Vis	High	3	3	3

Material Compatibility

Resin	HT	HT-X	TS
ABS, MABS, ASA	~	\diamond	✓
COC, COP	\diamond	\diamond	~
EVA	\diamond	\diamond	✓
LCP	\diamond	\diamond	✓
PA	~	\diamond	~
PBT	\diamond	\diamond	✓
PC / PC Blends (excluding PC+PLA)	~	\diamond	~
PE (HDPE, MDPE, LDPE, LLDPE)	✓	✓	✓
PEEK	\diamond	\diamond	~
PEI	\diamond	\diamond	~
PET, Copolyester, PETG, PCTA, PCTG	\diamond	\diamond	✓
PLA	\diamond	\diamond	~
PMMA, SMMA	\diamond	\diamond	✓
POM	~	\diamond	~
PP	\checkmark	~	~
PPA	\diamond	\diamond	✓
PPS	\diamond	\diamond	~
PS, GPPS, HIPS	~	\diamond	✓
PSU, PPSU	\diamond	\diamond	~
PVC-Flexible	\diamond	\diamond	~
SAN	~	\diamond	✓
Thermoplastic Elastomer	~	\diamond	~
(TPE, TPO, TPV, SBS, SEBS, TPU) Abrasive $\leq 15\%$	√		
		\diamond	
Abrasive >15%		\diamond	✓ ✓
Corrosive	\diamond	\diamond	✓

 \checkmark – Compatible

◇– Contact HUSKY

Ultra 500 Hot Tip Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		HT	HT-X	HT-C	TS
sity	Low	16	16	16	30
Viscosity	Medium	10	10	10	20
-	High	3	3	3	12

Material Compatibility

Resin	HT	HT-X	HT-C	TS
ABS, MABS, ASA	~	~	~	✓
COC, COP	\diamond	\diamond	\diamond	✓
EVA	~	~	~	✓
LCP	\diamond	\diamond	✓	✓
PA	~	\diamond	~	✓
PBT	~	\diamond	~	✓
PC / PC Blends (excluding PC+PLA)	~	\diamond	✓	✓
PE (HDPE, MDPE, LDPE, LLDPE)	~	~	~	✓
PEEK	\diamond	\diamond	\diamond	✓
PEI	\diamond	\diamond	\diamond	✓
PET, Copolyester, PETG, PCTA, PCTG	\diamond	\diamond	\diamond	\checkmark
PLA	\diamond	\diamond	\diamond	✓
PMMA, SMMA	~	\diamond	~	✓
POM	~	\diamond	~	✓
PP	~	~	~	✓
PPA	\diamond	\diamond	~	✓
PPS	\diamond	\diamond	~	✓
PS, GPPS, HIPS	~	\diamond	~	✓
PSU, PPSU	~	\diamond	\diamond	✓
PVC-Flexible	\diamond	\diamond	\diamond	✓
SAN	~	\diamond	\diamond	✓
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	✓	~	~	~
Abrasive ≤ 15%	✓	\diamond	~	~
Abrasive >15%	\checkmark	\diamond	✓	✓
Corrosive	\checkmark	\diamond	\checkmark	\checkmark

✓ – Compatible

◇– Contact HUSKY

Ultra 750 Hot Tip Application Guidelines

Max Throughput (g/sec.)

please refer to:

Section 1-4

		HT	HT-X	HT-C	TS
ty	Low	175	175	175	350
Viscosity	Medium	80	80	80	250
Ś	High	40	40	40	60

Material Compatibility

Resin	HT	HT-X	HT-C	TS
ABS, MABS, ASA	~	~	~	✓
COC, COP	\diamond	\diamond	\diamond	✓
EVA	✓	~	~	✓
LCP	\diamond	\diamond	~	✓
PA	\checkmark	\diamond	✓	\checkmark
PBT	\checkmark	\diamond	~	\checkmark
PC / PC Blends (excluding PC+PLA)	\checkmark	\diamond	~	\checkmark
PE (HDPE, MDPE, LDPE, LLDPE)	\checkmark	✓	~	\checkmark
PEEK	\diamond	\diamond	\diamond	\checkmark
PEI	\diamond	\diamond	\diamond	✓
PET, Copolyester, PETG, PCTA, PCTG	\diamond	\diamond	\diamond	\checkmark
PLA	\diamond	\diamond	\diamond	✓
PMMA, SMMA	\checkmark	\checkmark	✓	\checkmark
POM	\checkmark	\diamond	~	\checkmark
PP	\checkmark	✓	~	\checkmark
РРА	\diamond	\diamond	~	\checkmark
PPS	\diamond	\diamond	✓	\checkmark
PS, GPPS, HIPS	\checkmark	✓	~	\checkmark
PSU, PPSU	\checkmark	\diamond	\diamond	\checkmark
PVC-Flexible	\diamond	\diamond	\diamond	✓
SAN	\checkmark	\diamond	~	✓
Thermoplastic Elastomer (TPE, TPO, TPV, SBS, SEBS, TPU)	~	~	~	~
Abrasive ≤ 15%	~	\diamond	~	✓
Abrasive >15%	~	\diamond	~	~
Corrosive	~	\diamond	~	✓
. Compatible			Contact UI	

◇– Contact HUSKY

Ultra 1000 Hot-Tip Application Guidelines

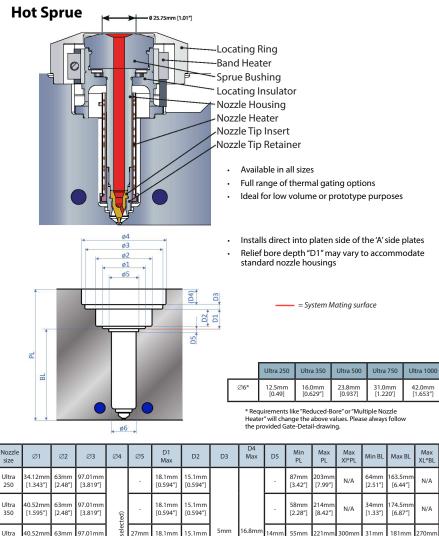
Max Throughput (g/sec.)

please refer to:

Section 1-4

		HT	HT-C	TS
Æ	Low	350	350	750
Viscosity	Medium	150	150	350
Ż	High	50	50	90

Material Compatibility


Resin	HT	HT-C	TS
ABS, MABS, ASA	~	~	~
COC, COP	~	~	~
EVA	~	~	~
LCP	~	~	~
PA	~	✓	~
PBT	~	✓	~
PC / PC Blends (excluding PC+PLA)	✓	✓	~
PE (HDPE, MDPE, LDPE, LLDPE)	~	✓	~
PEEK	\diamond	\diamond	~
PEI	\diamond	\diamond	~
PET, Copolyester, PETG, PCTA, PCTG	\diamond	\diamond	~
PLA	✓	~	~
PMMA, SMMA	~	✓	~
POM	~	✓	~
PP	✓	✓	~
PPA	~	✓	~
PPS	~	✓	~
PS, GPPS, HIPS	~	✓	~
PSU, PPSU	\diamond	\diamond	~
PVC-Flexible	\diamond	\diamond	~
SAN	~	✓	~
Thermoplastic Elastomer	~	~	~
(TPE, TPO, TPV, SBS, SEBS, TPU)			
Abrasive ≤ 15%	√	✓	~
Abrasive >15%	√	~	~
Corrosive	✓	✓	✓

 \checkmark – Compatible

◇– Contact HUSKY

Hot Tip Nozzle Stacks

Single Drops

Ultra 250	34.12mm [1.343"]	63mm [2.48"]	97.01mm [3.819"]		-	18.1mm [0.594"]	15.1mm [0.594"]			-	87mm [3.42"]	203mm [7.99"]	N/A	64mm [2.51"]	163.5mm [6.44"]	N/A
Ultra 350	40.52mm [1.595"]	63mm [2.48"]	97.01mm [3.819"]	selected)	-	18.1mm [0.594"]	15.1mm [0.594"]			-	58mm [2.28"]	214mm [8.42"]	N/A	34mm [1.33"]	174.5mm [6.87"]	N/A
Ultra 500	40.52mm [1.595"]	63mm [2.48"]	97.01mm [3.819"]		27mm [1.063"]	18.1mm [0.594"]	15.1mm [0.594"]	5mm [0.197"]	16.8mm [0.661″]	14mm [0.55"]	55mm [2.16"]		300mm [11.81"]		181mm [7.13"]	270mm [10.62]
Ultra 750				ocating Ring Relief on Locating Ring Dia							69mm [2.71"]		320mm [12.59"]		189mm [7.44"]	275mm [10.82"]
Ultra 750 S6	53.02mm [2.087"]	70mm [2.756"]	97.01mm [3.819"]	Locating l dent on Locat	-	25.15mm [0.872″]	22.15mm [0.872"]			-	73.3mm [2.89"]	230mm [9.055"]		43.5mm [1.71"]	183mm [7.20"]	
Ultra 750 UP				L (Dependent								314mm [12.36"]	N/A	57mm [2.24"]	267mm [10.51"]	N/A
Ultra 1000	58.02mm [2.284"]	70mm [2.756"]	97.01mm [3.819"]		-	20.93mm [0.706″]	17.93mm [0.706"]			-	97mm [3.81"]	233mm [9.17"]	N/A	71mm [2.79"]	190mm [7.48"]	N/A

* Please note there is a longer lead time for XL dimensions

Configure to Order (CTO)

Benefit:

- Available on-line via PRONTO-Direct E-Commerce
- Shorter lead time
- · 2D installation drawings available on-line prior to order
- 3D model, gate details and BOM available within 24hrs* of order and complete information for project

* For online submitted orders only

Engineering to Order (ETO):

Benefit:

- Custom nozzle lengths available
- · Can support more demanding applications such as corrosive resins
- Standard and custom components

CTO Offerings

Nozzle Series	Sprue Inlet Diameter	Gating Style	PL-Dim Range	approx. BL-DIM*
U250	Not available	Not available	Not available	Not available
U350	4 ^{*1} , 8	НТ	57.2mm - 214.41mm	35mm - 174mm
0330	4 ', 8	TS	57.2000 - 214.40000	5511111 - 17411111
		HT	54.25mm - 221.42mm	
U500	4 ^{*1} , 8	CAP	54.37mm - 221.54mm	32mm - 181mm
		TS	54.28mm - 221.44mm	
	6.35 ^{*1} , 11.5	HT	68.68mm - 235.85mm	39mm - 189mm
U750		HT-S	73.28mm - 230.42mm	43.5mm 183mm
0750		CAP	68.69mm - 235.86mm	39mm - 189mm
		TS	68.68mm - 235.84mm	29mm - 189mm
		HT	96.27mm - 233.36mm	
U1000	11.5	CAP	96.44mm - 233.53mm	71mm - 190mm
		TS	96.3mm - 233.4mm	

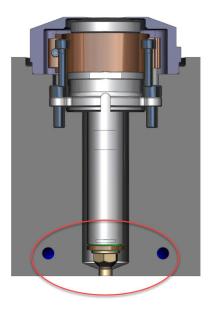
* Approximate BL-Values in the table are references which can deviate by ± 1 mm. Final BL-Value can be found on the Gate-Detail and 3D after finished engineering. BL available in the increment of 10mm within range.

^{*1} Only available with flat contact surface

All Nozzle Series:

- Sprue interface seal off type (mm): flat, (SR)12.7, (SR)15.5, (SR)19.05, (SR)20, (SR) 40
- Locating ring Ø (mm): 100, 101.3 (3,99"), 125
- · Standard electrical connectors and electrical adapter box available as paid options

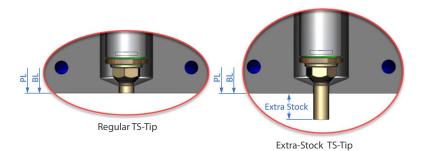
Single Drops-Hot Sprue


Configure to Order (CTO) vs Engineering to Order (ETO)

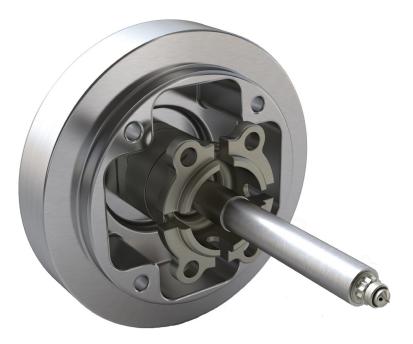
			CTO:	ETO:	Comment:
Application					
Corrosi			×	 ✓ 	Requires stainless steel components
-	emperature		×	~	
• High-Pi	ressure		×	✓	Requires high pressure components
Gating:			1	1	
Series	Тір	Extra-Stock			
U250	НТ	-	×	~	
0250	HT-X	-	×	\checkmark	
	НТ	-	✓	~	
U350	HT-X	-	×	✓	
	TS	-	✓	~	
	НТ	-	✓	✓	
	HT-X	-	×	✓	
U500	САР	-	✓	✓	
	тѕ	-	✓	~	
		3.2 mm	✓	~	
	НТ	-	✓	~	
	HT-X	-	×	~	
	HT-S	-	✓	~	
	CAP	-	✓	~	
U750		-	✓	~	
	TS	3.2mm	✓	\checkmark	
		15.0mm	✓	~	
	UP	-	×	~	
	SG	-	×	~	
	НТ	-	✓	~	
	САР	-	✓	~	
U1000		11.0 mm	√	~	
	тѕ	-	✓	~	
		11.0 mm	✓	 ✓ 	<u> </u>
Nozzle Heat					
Series		nology			
U250		HTM JNH	√ ×	√ ×	Standard offering Not available
		HTM	×	× √	Standard offering
U350		JNH	x	x	Not available
		HTM	x	√	Reduced Bore
U500		JNH	√	\checkmark	Standard offering
U750		НТМ	×	✓	Reduced Bore
0750	UNH		√	 ✓ 	Standard offering
U1000		HTM JNH	√ x	√ ×	Standard offering Not available
Other:					
	componen	ts	~	~	
Custom c	omponents	5	×	\checkmark	e.g. custom nozzle length,
Repeat-Pi	roject		×	✓	

 \checkmark = available ×= not available

Single Drops-Hot Sprue


Explanation "Extra-Stock" on Nozzle-Tip Example: U750 TS (CTO)

Extra-Stock tips are available for CTO-Projects according to the table shown on page 5-15.


Definition of Extra-Stock:

Extra-Stock is the protrusion of the tip beyond the BL/PL-Dimension. For CTO-Projects it is not possible to include this Extra-Stock into the BL/PL-Dimension.

Hot Tip Nozzle Stacks

Single Drops-Hot Sprue Hot-Sprue - CTO

Now Available to Configure Online Visit **Shop.husky.co**

Ultra 750 HT-S6 "The Pioneer Nozzle for Closure Hot Runners"

Closure-specific performance characteristics

Fast Cycle time capabilities < 3 seconds 6- Hole Tip for Flow-Line reduction and quick Color-Change Compatible with ESP (Energy Savings Package for HDPE application) Heat Profile optimized for Polyolefin resins PP and PE grades only

Features

- Robust design
 - Seal-off ø = 19.05mm [0.75"]
 - Nozzle housing ø = 22.3mm [0.875"]
- Matches 750 Series gate detail
- Easy maintenance
 - o Easy tip removal / replacement
 - o Tip maintenance in machine
- Tip Material for quick Heating/Cooling
- Excellent cooling access for mold maker
- Leak-Free Operation
- Excellent Gate-Quality minimum string

Application Guidelines

Max Throughput (g/sec.) please refer to: Section 1-4

		HT-56
sity	Low	75
Viscosity	Medium	35
	High	20

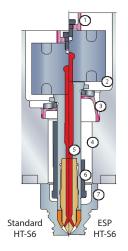
Material Compatibility

Resin	HT-56
PE (HDPE, MDPE, LDPE, LLDPE)	\checkmark
PP	✓
· - · · · · ·	

√– Compatible

◇– Contact HUSKY

Energy Savings Package (ESP) for HDPE-Closures Hot Runners


Selling Value

- Specifically designed for the closure market (MW, CSD, beverage closures in general, overcaps usually molded with the HT-S6 nozzle)
- Help to reduce heat loss from largest sources of the hot runner resulting in energy savings
- Similar performance
- No cost increase
- Key dimensional differences:
 - Nozzle bore relief increased to 37mm [1.45"] (Std 31mm[1.22"]) to have full benefit of energy savings
 - Nozzle pitch increase to 50mm [1.96"] (Std 44.5mm [1.75"])
 - HR shut height increase by up to 16mm [0.62"]
 - L-dim:
 - Up to 60mm [2.36"] (nozzle housing length 120mm [4.72"] max).
 - Preferred value: L-dim 30mm or 40mm (nozzle housing length 90mm [3.54"] and 100mm [3.93"] respectively)

Benefits

- Up to 30% energy savings over standard hot tip (HT-S6) applications
- Minimal impact on mold design (check possibility to increase heater bore relief to 37mm [1.45"] in the gate insert)
- Similar processing window
- Similar heat up time
- Similar color change performance as standard

Features

- 1. 14 mm [0.55"] height back-up pad 10mm [0.39"] std
- 2. 7 mm [0.27"] bottom manifold clearance 5mm [0.19"] std
- 3. Low conduction nozzle insulator 10mm [0.39"] longer housing typically required
- 4. Larger nozzle bore (37mm [1.45"]) Ø31mm [1.22"] std
- 5. Modified nozzle housing
- 6. Short UNH heater (30mm [1.18"]) 70mm [2.75"] std
- 7. Increase clearance on gate insert

Ultra 750 Ultra Packaging Nozzle (UP)

Ideal for High Speed Packaging Applications

- · Cycle times as low as 3 seconds
- Up to 2413 bar [35k psi] injection pressure
- Throughputs up to 300 g/sec.
- TC or % control

Features

- Robust design
 - Seal-off land = 2mm [0.78"]
 - Seal-off ø = 19.05mm [0.75"]
 - Nozzle housing ø = 22.3mm [0.875"]
- Matches 750 Series gate detail
- · Easy maintenance
 - Easy tip removal / replacement
 - Tips and retainers replaceable without removing nozzle heater
- Gating options
 - Diverted
 - Extended Diverted
 - Throughflow
 - Extended Throughflow

For a description of the criteria that defines a part as "Thinwall" please contact Husky

Application Guidelines

Max Throughput (g/sec.) please refer to:

Section 1-4

		UP	UP-X
sity	Low	300	300
Viscosity	Medium	100	100
-	High	-	-

Material Compatibility

Resin	UP	UP-X
PE (HDPE, MDPE, LDPE, LLDPE)	\checkmark	✓
PP	√	✓
PS, GPPS, HIPS	✓	✓

✓ – Compatible

 \diamond – Contact HUSKY

Hot Tip Nozzle Stacks

Ultra SideGate

In this section:

Page

6-1	Overview
6-6	Ultra SideGate-Applications Guidelines
6-7	Ultra SideGate Angled
6-7	Ultra SideGate Inline
6-8	

Typical target applications and typical markets

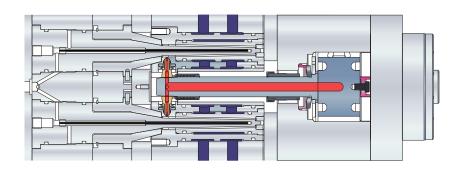
- Parts which are small, long, open ended at both ends
- Typical part size range: 0.2 to 10.0 grams (depending viscosity and injection time)
- When core pins restrict access for conventional gating
- For cold runner elimination
- Medical market: pipette tips, syringe barrels, infusion-transfusion components tube connectors, luer, luer lock
- Closure market: specialty closures, flip top caps
- · Technical market: small technical components (check resin compatibility)

Flexibility and Part Quality

- Flexibility: 1, 2 or 4 tips per nozzle
- Design flexibility in the cooling placement (possible around long parts)
- · No split cavity required, no witness line
- Gate quality: Typically < 0.05mm
- Resin dependent, stiffer the resin, the better (Consult Application Engineering for critical gate quality application)

Ultra SideGate Order Guidelines

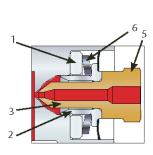
- See Material Compatibility & Throughput per gate chart Gate diameter - 0.70mm [0.027"], 0.80mm [0.031"], and 0.90mm [0.034"] based on application
- Gate diameter 0.60mm [0.023"], for gate diameter available, based on application and gate diameter guidelines
- Standard pitch spacing (tip-to-tip): 55mm [2.16"], others see specials section
- Additional mold maker information available from Husky

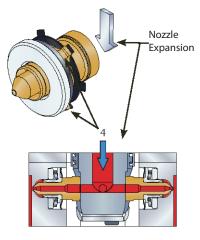

6-1

Ultra SideGate

Principle

- Tip independent from the nozzle housing; always aligned with the gate
- Simple integration without cavity split and easy gate detail manufacturing
- Tip sealing obtained with a spring load


- Better part quality (no witness line from cavity split) Less scrap
- Less scrap Less mold maintenance cost
- Lower cavity insert cost
- Small footprint more
- cavities in smaller mold size 1, 2 or 4 cavity per nozzle



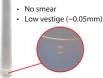
Tip assembly, features and benefits

- 1. Ceramic insulation wide process window
- 2. Low conduction seal ring wide process window
- 3. High conduction tip body wide process window
- 4. Anti-tilting fingers ensures leak-proof operation
- 5. Wear resistant ring preserve seal surface
- 6. Spring seal prevent plastic leak cold start protection

- No special start up procedure required (no temperature boost)
- No need for special controller
- Reduce risk of cavity loss or short shot
- Spring seal prevent accidental plastic leak
- Seal longevity prevent plastic leakage and avoid downtime

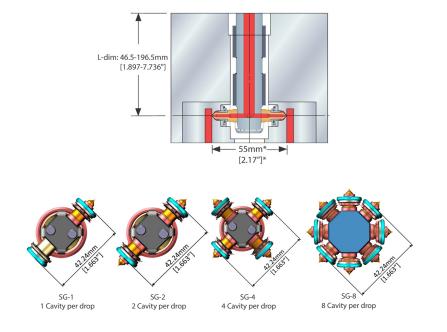
Maintenance

- · Easy maintenance from the split line into the press
- Full benefit of the ease of maintenance when tool design allow to pull gate insert from the split line
- · Blank tip available to neutralize cavities individually



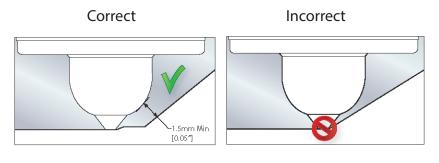
Gate contamination cleaning in less

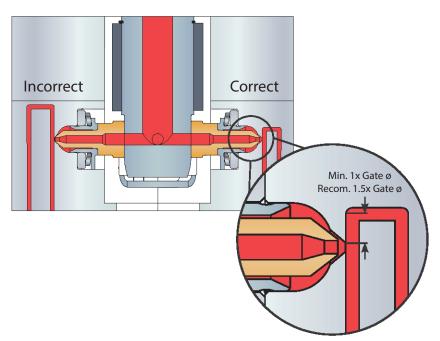
- than 30 minutes from stop to start
- Tip, TC, heater change from split line
- Faster and easier than most competitors


Gate quality

- Direct thermal gating
- Gate sheared off during mold opening

- Direct gating on geometries typically gated by cold runner
- Eliminate cold runner
- Commodity and technical resins
- Excellent gate quality

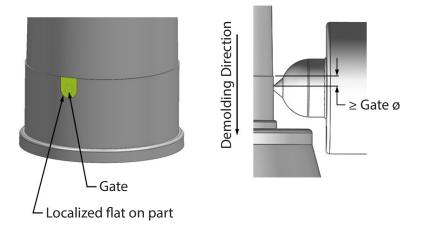

Tip-to-Tip Pitch Spacing


* Customized Tip-to-Tip Pitch Spacing, please refer to Section "Specials" in this Chapter

Gate Detail Consideration

Minimum steel thickness

Gate location on the part



Ultra SideGate

Gate Detail Consideration

Molding around the gate:

For optimal gate quality, Husky recommends that a localized flat be positioned on the part around the gate equal to or greater than the gate diameter with a draft angle of 0° opposite the direction of demolding. This will insure the frozen cold slug in the gate shears cleanly and does not pull molten material from the gate bubble. A larger draft angle up to 1° is possible but may have a negative impact on gate quality.

Ultra SideGate Application Guidelines

Max Throughput (g/sec.)

please refer to:

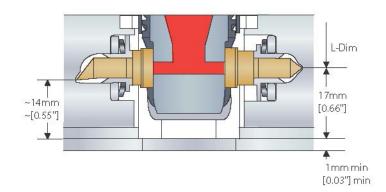
Section 1-4

		SG	SG-Angled
osity	Low	10	10
Viscosity	Medium	4	4
	High	1	1

Material Compatibility

Resin	SG	SG-Angled
ABS, MABS, ASA	✓	\diamond
COC, COP	✓	\diamond
EVA	\diamond	\diamond
LCP	\diamond	\diamond
PA	\diamond	\diamond
PBT	\diamond	\diamond
PC / PC Blends (excluding PC+PLA)	\checkmark	\diamond
PE (HDPE, MDPE, LDPE, LLDPE)	\checkmark	✓
PEEK	\diamond	\diamond
PEI	\diamond	\diamond
PET, Copolyester, PETG, PCTA, PCTG	\diamond	\diamond
PLA	\diamond	\diamond
PMMA, SMMA	✓	\diamond
POM	\checkmark	\diamond
PP	✓	✓
PPA	\diamond	\diamond
PPS	\diamond	\diamond
PS, GPPS, HIPS	✓	\diamond
PSU, PPSU	\diamond	\diamond
PVC-Flexible	\diamond	\diamond
SAN	✓	\diamond
Thermoplastic Elastomer	\diamond	\diamond
(TPE, TPO, TPV, SBS, SEBS, TPU)	\checkmark	
Abrasive ≤ 15%	\diamond	\diamond
Abrasive >15%	\diamond	\diamond
Corrosive	\diamond	\diamond

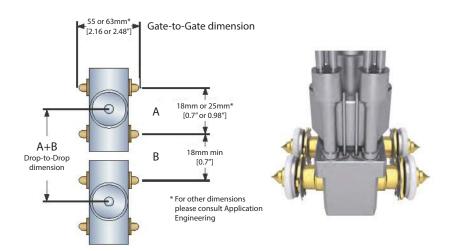
 \checkmark – Compatible


◇– Contact HUSKY

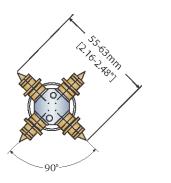
- All gate cooling layouts must be reviewed by Husky prior to machining
- In case of color change, HT-U should be preferred when resin is compatible
- ${\rm *-}\,Good\,process\,window\,but\,creating\,high\,vestige\,-\,consult\,Application\,Engineering$

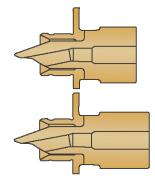
Ultra SideGate Angled

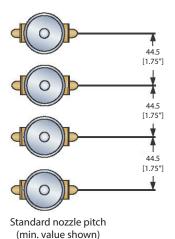
Angled tip:

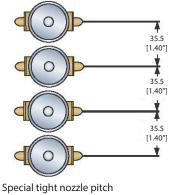

- Improve access on part closer to the parting line
- Reduce the offset of the split line

Ultra SideGate Inline

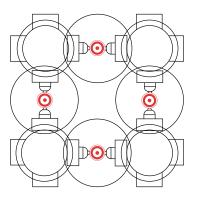

Inline Configuration:


- Smaller mold base with tight part spacing
- Split cavities not required for hot runner integration


Specials


- Custom tip length (CAUTION, standard 55mm [2.16"] should always be preferred)
 - Tip length longer than 63mm [2.48"] must be reviewed for feasibility, pricing and lead-time
 - Blank in place for gate distance from 55mm to 63mm (2 weeks lead time)
 - HT-T and HT-U
 - Resins: Polyolefins, Styrenics, others on review
 - May require adjustment of nozzle tip temperature set point and possible impact on short shot balance

- Husky application review required for all SG specials
- Tighter nozzle pitch
 - Smaller than 44.5mm [1.75"] standard value
 - If cavity size allows for it
 - Minimum 35.5mm [1.40"] with SideGate Inline nozzle spring pack
 - Resins: Polyolefins, Styrenics, others on review



(min. value shown)

Specials

- Special layouts
 - Requires non-standard nozzle housings (other configuration than SG1, SG2 @ 180° or SG4)
 - Example shows SG2 @ 90°, in a square configuration
 - Like for SG1, opposite side of the tips to be supported with a dummy spacer to be considered for the mold construction
 - Technical Approval MANDATORY longer lead time

Square configuration - to minimize core shifting in critical applications (If core shifting cannot be addressed with part / mold design)

In this section:

Page

7-1 PRONTO-Direct™ Overview
7-2 PRONTO-Direct [™] Information
7-3 Design for PRONTO-Direct™
7-3Application & Nozzle Details
7-4 Nozzle Length
7-4Layout Details
7-5 Drop & Pitch Spacing
7-5 Minimum Plate Sizes required
7-6 Machine Interfaces
7-7 PRONTO-Direct [™] - Paid Options

PRONTO Direct[™] Overview

Benefits

Configurable online

PRONTO Direct[™] is perfect for a wide range of applications. Quickly configure it in a few short steps.

Easy to Order

Follow the steps in the ONLINE-Configurator after registration

Spend Less

Enjoy significant savings compared with our regularly priced PRONTO[®] manifoldsystems purchased off-line — with zero sacrifice in quality.

Design Optimization

Shorter engineering drawing lead times allow for a faster mold design process.

Get It Fast

Ships up to two weeks faster than conventional hot runners. Order online today and get 3D engineering models within 24 hours.

Reduced Risk

PRONTO Direct™offers proven Husky quality with leakproof operation and a full warranty.

Greater Part Consistency

Every system is pre-validated to ensure thermal uniformity.

MARKETS SERVED

AUTOMOTIVE

ELECTRONICS

PRONTO Direct[™]

PRONTO Direct[™] Information

Application

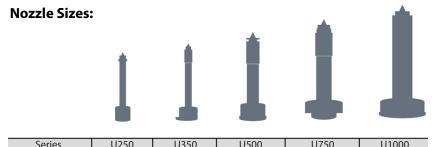
- Manifold-System only (2 & 4 Drop only)
- Single L-Dim or BL-Dim
- Part weighs up to 450 grams
- Throughput up to 350 g/sec
- Suitable for a selection of non-corrosive resins/additives even when using some filler
- Maximum Pressure: 1792 bar [26,000 psi]
- Max temperatures:
 - o Mold: 80°C [176°F]
 - o Melt: 290°C [554°F]

Deliveries

- Project-Related
 - o 3D Model
 - Inverse Gate Detail
 - Inverse Manifold Pocket
 - Simplified Manifold System Assembly
 - o 2D Drawing-Package
 - Plan-View Assembly
 - > Electrical Schematic (no option to customize)
 - Gate Detail
- General
 - o Documentation on https://www.husky.co/en/solutions/manuals/
 - o 🗹 Plate Design Guidelines for Husky Manifold Systems
 - o 🗸 Gate-Cooling-Recommendation

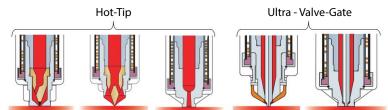
Application & Nozzle Details

Compatible Resin:


- ABS
- PA, PA6, PA66
- PP
- PS
- PE, HDPE, LDPE, LLDPE, MDPE
- TPE
- PBT

Filler:

Commonly used fillers up to 35% are supported without the need of a Technical Approval from HUSKY


Filler not supported: 🔨

- Antistat
- Barium Sulfate
- Boron Nitride
- Cellulose
- Coupling Agent
- Molecular Sieve

Series	U250	U350	U500	U750	U1000
PRONTO-Direct [™]	×	>	>	>	×
Max. Throughput g/sec.	N/A	20	30	350	N/A

Tip-Choice:

Note:

Extra-stock tips, extended tips and UltraHelix are **<u>not</u>** supported by PRONTO Direct[™]

PRONTO DirectTM

Nozzle Details

Valve-Gate Detail:

Following options will be specified by automation considering application-requirements and pitch-spacing. No customization is possible!

1) Valve-Stem Actuation:

Actuation		
Standard	LX	
Large Pitch	EX	
Extended Maintenance Interval	EMI	

2) Valve-Stem Shutoff:

3) Valve-Stem Stroke:

- Standard •
- **Extended** •

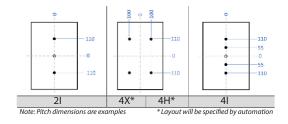
Nozzle Length:

L-Dimension:

Nozzle	Gate	Min-L	Max-L	
Ultra 350	VG	40.00.040	218 [8.58"]	
Ultra 350	HT	13 [0.51"]		
Ultra 500	VG	13 [0.51"]	104 17 240	
Ultra 500	HT		184 [7.24"]	
Ultra 750	VG	27.4 [1.08"]	199 [7.83"]	
oitra 750	HT		192 [7.56"]	

BL-Dimension:

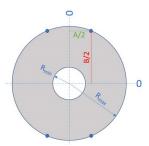
Nozzle	Gate	Min-BL	Max-BL	
Ultra 350	VG	53.0 [2.08"]	233 [9.17"]	
Ultra 550	HT			
Ultra 500	VG	70.0 [2.75"]	100 [7 92/]	
Ultra 500	HT	85.0 [3.34"]	199 [7.83"]	
Ultra 750	VG	57 [2.24"]	214 [8.42"]	
Ulua / 50	HT	64.0 [2.51"]	207 [8.15"]	


Layout Details:

Number of Drops:

 2 & 4 Drops Only (Layouts shown below)

Drop Layout:

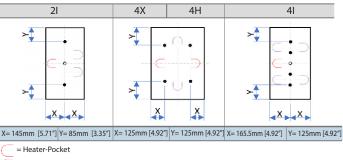

- 4 symmetrical configurations available •
- asymmetric (offset) layouts are not supported!

Drop & Pitch Information

Drop Spacing

- Minimum distance from inner drop to sprue (R_{min})
- Allows for standard design/components
- Maximum manifold size (R_{max})
 - Distance from outer most drop to sprue

Gate	Nozzle	R _{min}	R _{max}
	U350	31.8 [1.25"]	300 [11.8"]
Hot Tip	U500	32 [1.26"]	500 [19.7"]
	U750	40.4 [1.59"]	300[19.7]
		LX - 50 [1.97"]	
	U350 U500	EX - 65 [2.56"]	300 [11.8"]
		EMI - 78 [3.07"]	
		LX - 50 [1.97"]	
Valve Gate		EX - 65 [2.56"]	300 [11.8"]
		EMI - 78 [3.07"]	
		LX - 50 [1.97"]	
	U750	EX - 65 [2.56"]	400 [15.7]
		EMI - 78 [3.07"]	

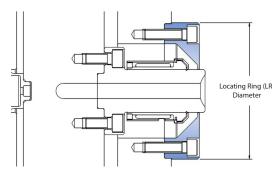

Pitch Spacing

- Same spacing requirements as our custom systems
- Dependent on nozzle size and gating style
- Allows for standard design/ components

Gate	Nozzle	Actuation	Min. Pitch
	U350	-	18 [0.71"]
Hot Tip	U500	-	25.4 [1.0"]
	U750	-	44.5 [1.75"]
	U350	LX	50 [1.97"]
		EX	59 [2.32"]
		EMI	50 [1.97"]
	U500	LX]	50 [1.97"]
Valve Gate		EX	59 [2.32"]
		EMI	50 [1.97"]
		LX	50 [1.97"]
	U750	EX	59 [2.32"]
		EMI	50 [1.97"]

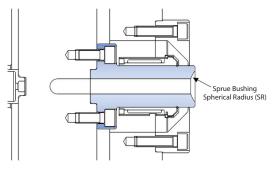
Minimum Plate Sizes required

• Following distances need to be respected to host the required pocket for the Manifold-System and its electrical connection.

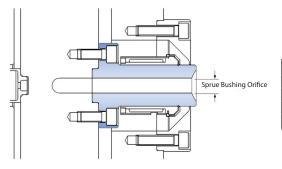


= optional Heater-Pocket

PRONTO Direct[™]


Machine Interfaces

Locating Ring (LR)


	Loc	ating Ring $arnothing$	Choices
	Ø	100 mm	3.93″
	Ø	101.3 mm	3.99"
R)	Ø	101.6mm	4.00"
,	Ø	120 mm	4.72"
	Ø	125 mm	4.92″
	Ø	160 mm	6.29"
	Do not supply (None)		

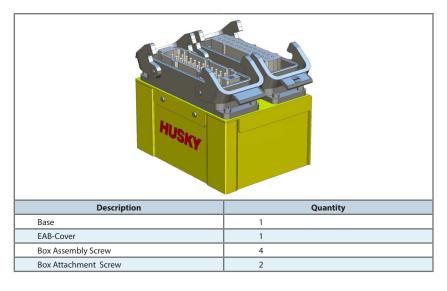
Sprue Bushing Radius (SR)

Sprue E	Sprue Bushing Spherical Radius (SR)				
SR	10 mm	0.39″			
SR	12.7 mm	0.50″			
SR	15.5 mm	0.61″			
SR	19.05 mm	0.75″			
SR	20 mm	0.78″			
SR	40 mm	1.57″			
	Flat				

Sprue Bushing Orifice

Sprue Bushing Orifice				
Ø 6.35 mm 0.25"				
Ø	8.00 mm 0.31"			
Ø 11.5 mm 0.45"				
Husky to specify (selection from the above diameters)				

PRONTO - **Direct**[™]


Paid Options

Electrical Connectors

- Choice of Harting[®] connectors
- Single- and double-latch options
- 16-, 24-, 25-pin connectors (please refer to the below table)
- Electrical-Adapter-Box (please refer to the below table)
- optional DME® wiring (PIC 12-G / MTC-8G / MTC-12G)

Latch	Pin	Harting®	Harting [®] Description	Harting [®] Description (Insert)	
		Туре	Base	Power (male)	Thermocouple (female)
Single	16	Han E [®]	09 30 016 0307	09 33 016 2601	09 33 016 2701
Single	24	Han E [®]	09 30 024 0307	09 33 024 2601	09 33 024 2701
Double	16	Han E [®]	09 30 016 0301	09 33 016 2602	09 33 016 2702
Double	24	Han E [®]	09 30 024 0301	09 33 024 2602	09 33 024 2702
Single	25	Han D®	09 20 016 0301	09 21 025 3001	N/A

Note: PRONTO-Direct[™] is just available with the above mentioned connectors

Customizations

PRONTO-Direct[™]is configured as an eCommerce Product with a defined scope of delivery. Deviating requirements from this scope might be covered by PRONTO-Manifold-Systems.

Please refer to the PRONTO-Section in the Handbook.

PRONTO

In this section:

Page

8-1	PRONTO Overview
8-2	Design for PRONTO
	8-2 Step1 - Nozzle Length
	8-3Step2 - Sprue Clearance
	8-3Step3 - Pitch Spacing
	8-8Step3 - Pitch Spacing Multi Material (2K)
	8-10 Step4 - Plate Sizing
	8-11Step5 - Configurable Options
8-14	PRONTO - FAQ

PRONTO Overview

Benefits

Faster Delivery*

Take advantage of reduced lead time when ordering PRONTO products.

Easy to Order

Follow the PRONTO guidelines noted in this handbook.

No Compromise in Quality

- · Optimized melt channels
 - Leak proof warranty

Lower Price*

Take advantage of reduced price for all PRONTO products.

Featuring

Optimized Processing

- Ultra-Nozzle (250, 350, 500, 750, 1000), Ultra Helix (250, 350, 500, 750) and Ultra Packaging (U750-UP)
- · Melt channels customized for each application

Flexible Pitch

- 1-32 drop manifold and hot runner systems (1-4 drops for Ultra 1000)
- 17 different manifold layouts
- Even profile for every application
- Balanced manifold layouts with level changes and thermally validated heater design ensure optimized processing for all applications

Configurable plates

- Flexible plate size
- Customer specified guide pin and interface taps
- Multiple clamping options including DME® and oversized backing plate

Multi Material (2K)

- Single face
- Independent injection (no co-injection) from injection side only (no side/top injection)
- Max 32 drop hot runner or manifold system (16 + 16)
- Consists of 2 separate manifolds
- Different Nozzle-Series allowed (1 per manifold)
- Different L-Dim/BL-Dim per manifold (optional)
- U1000 not available

* Applications requiring custom components will not be given PRONTO lead time or price

PRONTO

Design for PRONTO

5 step process for PRONTO eligibility

- 1. Nozzle Length
- 2. Sprue Clearance
- 3. Pitch spacing
- 4. Plate Sizes
- 5. Configurable system options

Step 1—Nozzle Length

- Must fall within range of min/max
- Any value within range*
 - Same for VG/HT
 - * Longer lead time may apply

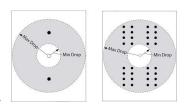
L-Dimension

Any value within range is feasible, shutheight limitation might require nonstandard components for which a longer lead time is required

Nozzle	Gate	Min-L	Max-L	Ext-L*
U250 /	VG	13 [0.51"]	150 [5.90"]	
Ultra Helix 250	HT	15[0.51]	164 [6.45"]	-
U350 /	VG	12 [0 [1/]	218 [8.58"]	
Ultra Helix 350	HT	13 [0.51"]	218 [8.58]	-
U500 /	VG	13 [0.51"]	230 [9.06"]	290 [11.41"]
Ultra Helix 500	HT	13 [0.51]	230 [9.06]	290[11.41]
U750 /	VG	27 4 11 00/1	230 [9.06"]	290 [11.41"]
Ultra Helix 750	HT	27.4 [1.08"]		
U1000	VG	15.7 [0.62]	250 [9.84"]	300 [11.81"]
01000	HT	13.0 [0.51"]	250 [9.84]	500[11.81]

Note: L-Dim and BL-Dim values consider HT-D or VG-General Tips, other tips influence the L-Dim and BL-Dim values

approx. BL-Dimension


Is based on standard components. In case a True-BL Dim is required, non-standard components are required for which a longer lead time is required

Nozzle	Gate	Min-BL	Max-BL	Ext-BL*	
U250 / Ultra	VG	70 4 [2 1 2"]	165 [6.49"]		
Helix 250	HT	79.4 [3.12"]	179 [7.04"]	-	
U350 / Ultra	VG 53.2 (2.00/2		105 57 2072		
Helix 350	HT	53.2 [2.08"]	185 [7.28"]	-	
U500 / Ultra	VG	40 6 11 01/7	245 [9.65"]	305 [12"]	
Helix 500	HT	48.6 [1.91"]			
U750 / Ultra	VG	55.6 [2.18"]	195 [7.68"]	205 (127)	
Helix 750	HT	48.8 [1.92"]	245 [9.65"]	305 [12"]	
U1000	VG	02 (2.22)	270 [10 (2/]	220 [12 50]	
01000	HT	82 [3.22"]	270 [10.63"]	320 [12.59"]	

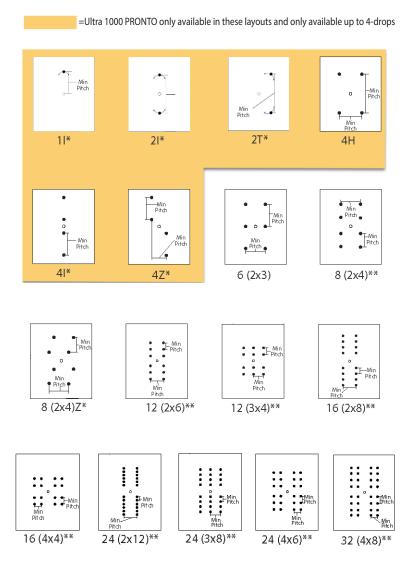
Step 2—Sprue Clearance

- Minimum distance from inner drop to sprue (Min Drop)
- Allows for standard design/components
- Maximum manifold size (Max Drop)
 - Distance from outer most drop to sprue
- ** Air Plate out of scope for U1000 PRONTO

Gate	Nozzle	Min Drop	Max Drop	
	U250	31.8 [1.25"]	300 [11.8"]	
	U350	51.8[1.25]	500[11.6]	
Hot Tip	U500	32 [1.26"]		
	U750 and U750-UP	40.4 [1.59"]	500 [19.7"]	
	U1000	50 [1.97"]		
	UH250	SX - 45 [1.77"]	300 [11.8"]	
	U350 and UH350	SX - 45 [1.77"]	300 [11.8"]	
		LX - 50 [1.96"]		
		EMI - 78 [3.07"]		
		SX - 45 [1.77"]		
Valve Gate		LX - 50 [1.96"]	300 [11.8"]	
Valve Gate	0500 and 011500	EX - 65 [2.55"]		
		EMI - 78 [3.07"]		
		LX - 50 [1.96"]		
	U750 and UH750	EX - 65 [2.55"]	400 [15.7]	
		EMI - 78 [3.07"]		
	U1000**	72 [2.83"]	500 [19.7"]	

Step 3—Pitch Spacing

- Same spacing requirements as our custom systems
- Dependent on nozzle size and gating style
 - Allows for standard design/ components

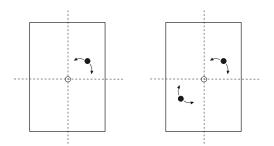

Minimum Pitch Spacing

Gate	Nozzle	Min Pitch	
	U250	18 [0.71"]	
	U350	18 [0.71″]	
Hot Tip	U500	25.4 [1.00"]	
	U750 and U750-UP	44.5 [1.75"]	
	U1000	61 [2.40"]	
Valve Gate	UH250	SX - 25.4 [1.00"]	
	U350 and UH350	SX - 25.4 [1.00"] LX - 50 [1.96"] EMI - 50 [1.96"]	
	U500 and UH500	SX - 25.4 [1.00"] LX - 50 [1.96"] EX - 59 [2.33"] EMI - 50 [1.96"]	
	U750 and UH750	LX - 50 [1.96"] EX - 59 [2.33"] EMI - 50 [1.96"]	
	U1000	75 [2.95″]	

PRONTO

Design for PRONTO

Step 3—Pitch Spacing - No Multi Material (2K) (Continued)

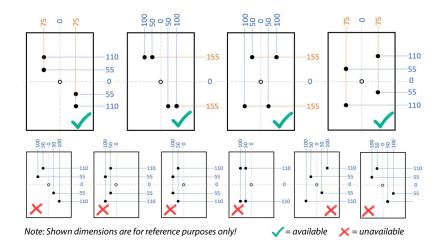


* Please see "Pitch Flexibility" on Page 8-5

** Please refer to the Pitch-Spacing details on page 8-7.

Step 3—Pitch Spacing (Continued)

* Pitch Flexibility

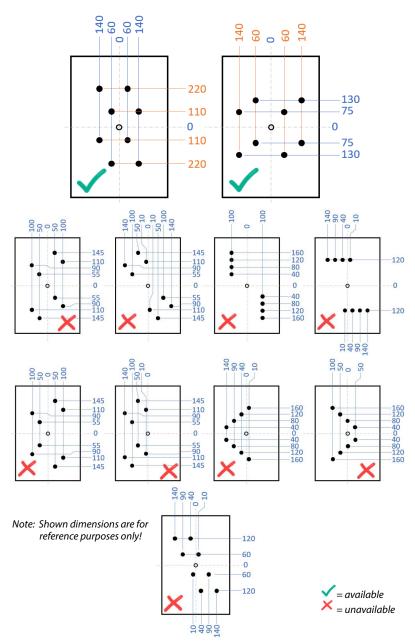

Pitch locations for 1 and 2 drop PRONTO systems are fully flexible and can be rotated about the injection point.

* Z-Layout

Pitch location for 4 Drop and 8 Drop PRONTO systems are available in both, symmetrical and asymmetrical configurations. (Layout: 4Z and 8Z)

Available options shown below.

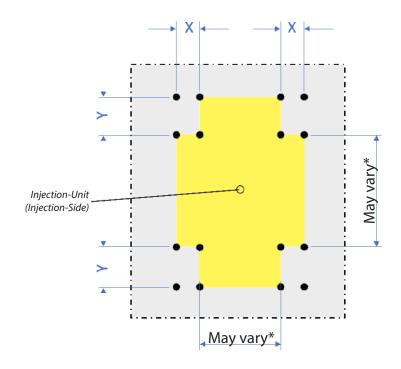
These layouts require pitch spacings (vertical and horizontal) to be symmetrical across the sprue. Horizontal or vertical drop alignment required as shown below in orange.



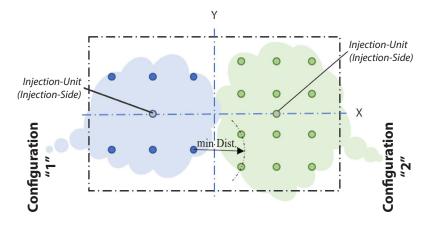
4-Drop asymmetrical layouts

8-5

Step 3—Pitch Spacing (Continued)


8-Drop asymmetrical layouts

Step 3—Pitch Spacing (Continued)

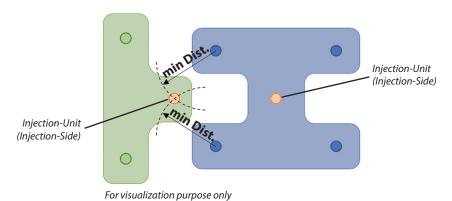

Details

- ** For systems with 8 drops and more, the following conditions must be taken into account.
- The horizontal as well as the vertical distances must be identical. (e.g. all horizontal "X" distances=60mm, all vertical "Y" distances=65mm). [Spacing across the sprue (0,0) may vary] i.e. as shown
- 2. Min. Pitch spacing as well as Sprue-Clearance according to Page 8-3 to be respected.

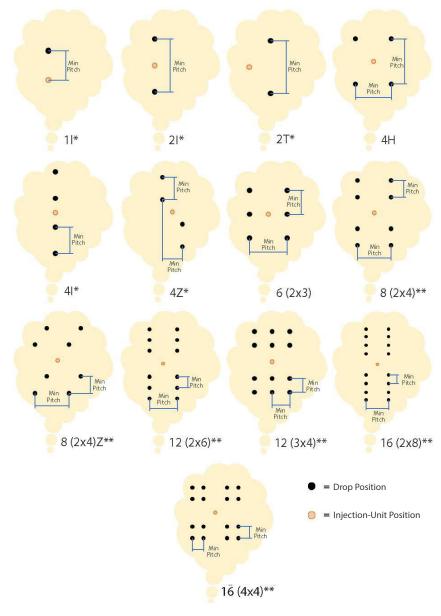
* May vary - See sprue clearance (Step 2 / Page 8-3) "X" & "Y" - See Minimum Pitch Spacing-Table (Step 3 / Page 8-3)

Step 3—Pitch Spacing Multi Material (2K)

PRONTO-Multi Material (2K) consists of 2 separate manifolds. Any combination of the following listed layouts is possible. (Up-to 16+16 Drops)


The arrangement of the injection units can be along X- or Y-axis.

Attention:


To ensure sufficient bolting possibilities, a minimum distance (min Dist.) from the closest nozzles of the two manifolds must be observed. (please see illustration above)

Same distance must be kept from any nozzle of a manifold to the Injection-Unit-Position of the other manifold. (please refer to the example shown below.)

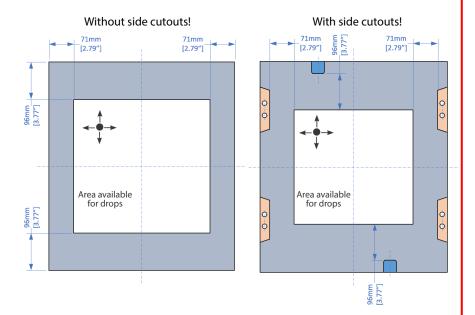
min Dist. = 65.0mm [2.56"]

Step 3—Pitch Spacing Multi Material (2K) (Continued)

* Please see "Pitch Flexibility" on Page 8-5

** Please refer to the Pitch-Spacing details on page 8-7.

PRONTO

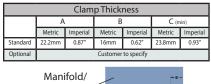

PRONTC

Design for PRONTO

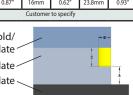
Step 4—Plate Sizing - No Multi Material (2K)

- Confirm plate sizes are within the maximum available width and length
 o Please refer to below table
- Check that all drop locations fit within the "area available for drops"

(leaving adequate open space to fit required features like wire channels)

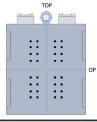


Area	Plate Width	Plate Length	PRONTO Lead-time advantage	PRONTO Price advantage
Asia	1200 [47.3"]	1500 [59.1"]	\checkmark	\checkmark
	1200 [47.3"]	1500 [59.1"]	×	\checkmark
EMEA	< 850 [33.5"]	< 850 [33.5"]	\checkmark	\checkmark
		≥ 1080 [42.5"]	×	\checkmark
	1200 [47.3"]	1500 [59.1"]	×	\checkmark
Americas	< 1000 [33.5"]	< 1000 [33.5"]	\checkmark	\checkmark
		≥ 1080 [42.5"]	×	\checkmark


Note: "Plate width" and "Plate length" are independent of the orientation on the IMM

Step 5—Configurable Options

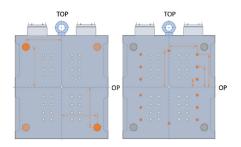
- Clamping Options
 - Benefits
 - Easy specification
 - Predictable design
 - Features
 - Industry standard clamping
 - Choice of clamping thickness



Center Plate Backing Plate Machine Plate

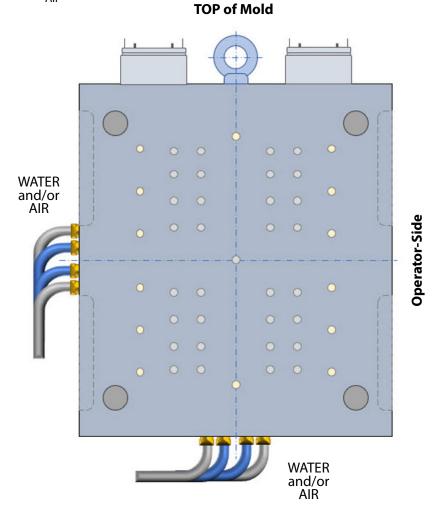
- Electrical Options
 - Requirements
 - Top Locations
 - Choose from standard connector offering

DME® - Style Clamping



Electrical Configuration			
Pins Latches Supplier			
6 16 24 25 32 48	Double or Single	DME Lapp Harting	

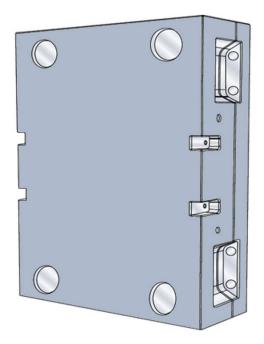
- Guide Pins and Interface Options
 - Guide Pins


PRONTO

- DME[®]/Hasco[®]
- Any size, location, qty
- Interface Options
 - Metric/Imperial
 - Any size, location, qty

Step 5—Configurable Options (Continued)

- Utility Locations
 - Water
 - Air



	Available Fittings				
	DME [®]	Festo®	Hasco®	Parker [®]	Staubli®
Air	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Water	\checkmark		\checkmark	\checkmark	\checkmark

PRONTO

Step 5—Configurable Options-Custom Cutouts

- Installations:
 - Back-up cutouts
 - Latch cutouts
 - Cutouts for bolting
- Requirements:
 - Manufacturing tolerance +/- 0.2 mm

PRONTO

PRONTO – FAQ

What items are allowable in PRONTO systems:

Permitted in PRONTO systems				
Feature	Note	Additional Cost	Increased Lead-Time	
Custom Nozzle Housing	Custom length within L-Dim range	Ø		
Customized plate cut-outs No limits in number of cut- outs, but space for wire grooves need to be considered. If cut-outs are not in the cor- ners, layout should be reviewed by Project Engineering	If drop to plate edge is at the min, cut-	Ø	0	
Sequential Valve Gate actuation	Limited to 4 drop Hot Runner systems Must be reviewed by Project Engineer- ing. Additional circuits and limited space is a constraint to install other standard features.	B	Ø	
<u>Customized Items like:</u> Locating-Ring Sprue-Bushing	Check with Husky factory For Nozzle Housings, please refer as well to the Table on the following page	s		
Special Application: Corrosive/high pressure/ high temperature		\$		
Different nozzle lengths	Moldflow may be required with 2 different L-dims.	Ó		
Powertech Box installation		\$	\bigotimes	
Thermocouple controlled Plates	Plate/Location definition must be provided by customer. Electrical Box configuration, size, etc. might be impacted and requires review.	*		

Ø	= Free of charge	
1	= Additional charge	
	= Impact on Lead-Time	
Ø	= No impact on Lead-Time	

PRONTO – FAQ

Which items do not fit within PRONTO?

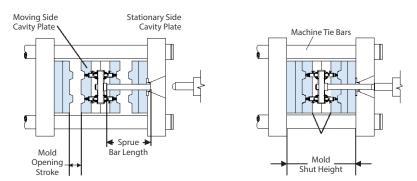
Not allowed in	PRONTO systems
Feature	Note
Special Gate-Insert design / gate manufacturing request from customer	
Special Valve-Stem shut-off geometry (angle, diameter, tolerances) or Non-Standard Valve-Stem raw material/ coating	
Reverse Taper Valve-Stem	
Customized Manifold-Bushing	
Customized Nozzle Housing	Custom raw material, internal geometry, coatings, etc.
Contoured Gate (HT or VG)	
Counterbore's, drills or cutouts going through the Hot-Runner-Plates. e.g.	Lead to a customized design of the Hot-Runner.
fastening the cavity-plate	
Offset Injection location	Might lead to an unbalanced system and custom design.
Customer circuits in Hot-Runner-Plates e.g Cavity-cooling - Hydraulic circuit - Air circuit	Lead to a customized design of the Hot-Runner.
<u>Customization Gate & Tip</u> : Gate-Land Gate bubble Nozzle Tip	Option may be available through our custom systems
Instructions that influence the PRONTO-Automation output e.g specifying TC position - specifying Manifold-Heater exit - specifying Non-Standard components 	This requires additional engineering capacity. In case specific requirements need to be fulfilled, a custom system should be taken into consideration.

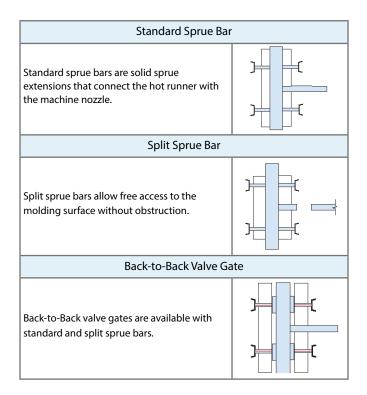
If your application requires any of these items please contact Husky to inquire about our custom hot runner

PRONTO

Stack Hot Runners

In this section:

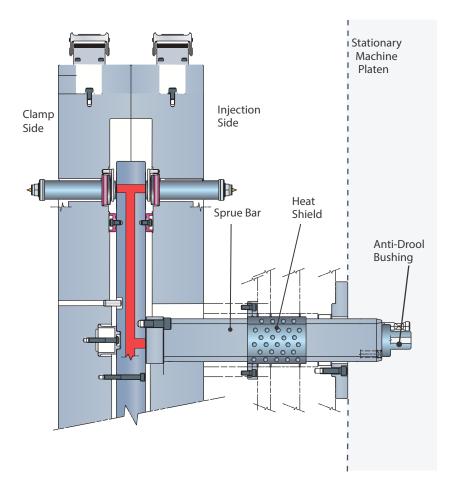

Page


9-1	Overview
9-2	Thermal Gate Consideration
9-3	Valve Gate Consideration
9-4	Sprue Bar
9-5	Standard Sprue Bar Installations
9-6	Standard Sprue Bar Pressure Limits
9-7	

Overview

Husky offers 2 level stack manifold systems and hot runners. A 2 level stack mold will nearly double the output per machine of a single face mold. Husky's experience gained in building over 3000 stack hot runners assures that all aspects of integrating the hot runner into the mold will be taken into account during design.

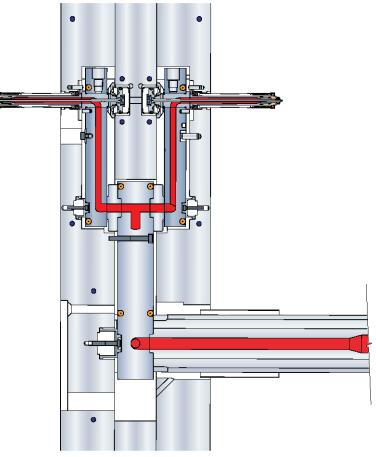
 In addition to 2 level stack systems; Husky has successfully built many 3 level and 4 level systems



Thermal Gate Consideration

Available for:

Ultra 250, Ultra 350, Ultra 500, Ultra 750, Ultra 750 UP and Ultra 1000 For all thermal gating methods, the nozzles can be positioned back-to-back or staggered



Minimum shutheights for stack systems will vary based on the requirements of the application. Please consult Application Engineering to determine the minimum shutheight for your application

Valve Gate Consideration

Available for:

Ultra 350, 500, 750, 1000; as well as Ultra Helix 250, 350, 500 and 750 In order to accommodate customer requirements Ultra VG nozzles can be positioned back-to-back using a 3 plate hot runner design

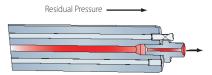
Back-to-Back

Minimum shutheights for stack systems will vary based on the requirements of the application. Please consult Application Engineering to determine the minimum shutheight for your application

Husky can provide offset stack valve gates as an option to address parts requiring this gating location or to provide a reduced shutheight. For further details and options please consult Application Engineering

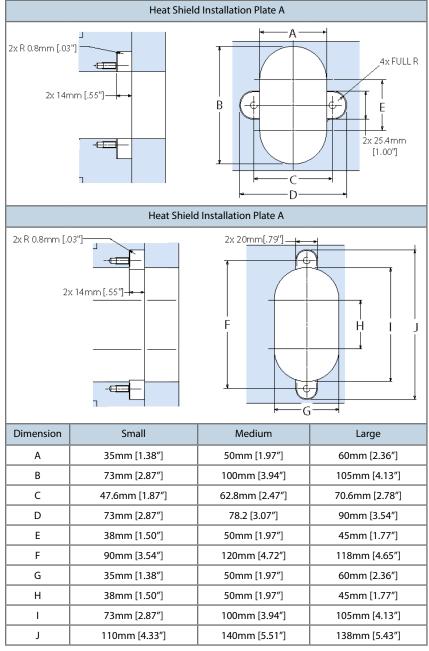
Sprue Bar

Standard Sprue Bar


The purpose of the sprue bar is to transfer the molten resin from the machine injection unit to the center section. When the mold is in the closed position, the machine nozzle seats against the sprue bar. When the mold opens the sprue bar moves with the center section and disengages from the machine nozzle.

- Husky calculates the correct sprue bar length based on the mold shutheight and the required mold opening stroke. This ensures that the end of the sprue bar remains guided in the stationary platen when the mold is in the open position and that it will not contact the machine nozzle prematurely on mold close
- The sprue bar is aligned to the machine nozzle by the sprue bar guide, which is installed behind the locating ring, or on the cavity plate. To prevent damage during operation, the sprue bar must not pull out of the sprue bar guide during the mold opening stroke

Anti-Drool Bushing


The function of the anti-drool bushing is to minimize the amount of resin that drools out of the sprue bar when it is not in contact with the machine nozzle. As the sprue bar moves with the center section during mold open, the residual melt pressure in the manifold forces the antidrool bushing backward

Husky has two types of anti-drool bushings: Anti-Drool and Ball Check Anti-Drool. Both have a second configuration where the sliding feature is removed so the bushing acts as an end cap. If desired, the ball can also be removed from the Ball Check Anti-Drool bushing for similar performance as the standard Anti-Drool bushing. Please see below for the application of each type.

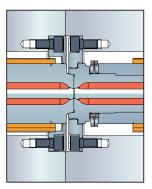
Applied on:	Hot Tip and Valve Gate Hot Runners		Valve Gate H	lot Runners
Machine	Anti-Drool	End Cap	Ball Check Anti-Drool	Ball Check End Cap
Interface				

Standard Sprue Bar Installations

Standard Sprue Bar Installations

Sprue Bar Thru Hole Installation in Core Plates		Locating I	nstallation Ring
		G H H	
Dimension	Small	Medium	Large
A	2x R 17.5mm [.69"]	2x R 25mm [.98"]	2x R 30mm [1.18"]
В	35mm [1.38"]	50mm [1.97"]	60mm [2.36"]
С	2x 19mm [.75"]	2x 25.4mm [1.00"]	2x 22.5mm [0.89"]
D	38mm [1.5″]	50mm [1.97"]	45mm [1.77″]
E	Ø 140mm ± 0.02mm Ø [5.51″ ±. 0008″]	Ø 140mm ± 0.02mm Ø [5.51″ ±. 0008″]	Ø 140mm ± 0.02mm Ø [5.51″ ±. 0008″]
F	Ø 69.85mm ± 0.03mm Ø [2.75″ ±. 001″]	Ø 100mm ± 0.03mm Ø [3.94″ ±. 001″]	Ø 108mm ± 0.03mm Ø [4.25″ ±. 0001″]
G	R 0.8mm [.03″]	R 0.8mm [.03″]	R 0.8mm [.03″]
Н	R 0.8mm [.03″]	R 0.8mm [.03″]	R 0.8mm [.03″]
I	-	2x MB	2x MB
J	6mm [0.24"]	6mm [0.24″]	6mm [0.24″]
к	Ø 19mm ± 0.03mm Ø [0.75″ ±. 0001″]	Ø 19mm ± 0.03mm Ø [0.75″ ±. 0001″]	Ø 24mm ± 0.03mm Ø [0.94″±. 0001″]

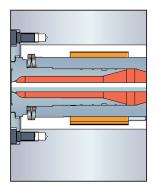
Standard Sprue Bar Pressure Limits


Size	Metric	Imperial
Large (22.23mm [0.875"])	124 MPa	18K psi
Medium (18.26mm [0.718"])	76 MPa	11K psi
Medium (16mm [0.629"])	124 MPa	18K psi
Small (14.29mm [0.562"])	97 MPa	14K psi
Small (11.5mm [0.452"])	241 MPa	35K psi

The Split Sprue Bar transfers resin from the machine injection nozzle to the hot runner of a stack mold. The transfer is designed to free the parting line from component interference while preventing resin leakage. The Split Sprue Bar accomplishes this through the connection of two independently controlled assemblies enclosed within the mold. These assemblies interface with each other at the parting line during mold closed and disengage upon mold open. This makes free drop of parts possible and allows unrestricted robot access for part take-off.

There are two Split Sprue Bar configurations: Inline and Offset. Located in the center of the mold, the Inline version is mounted co-axially with the machine nozzle. Resin flows though the inline valve gate unit mounted in the core backing plate and transfers melt to the moving side split sprue bar assembly through the tip interface at the parting line. The Offset Split Sprue Bar employs a transfer manifold system mounted to the stationary platen to route flow from the injection nozzle to a Split Sprue Bar unit located at a place of convenience to the mold design.

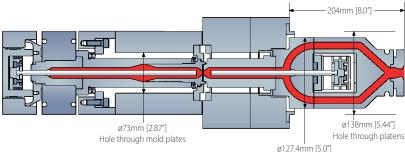
Please note that Split Sprue Bar stack systems are not sold as manifold systems


Key Features:

Taper stem shut-off

Radial taper at nozzle lead-in for alignment

Patented sliding joint


Sliding joint with spring packs for robustness

Two standard throughput options are available, "Medium" and "Large". Husky's Application Engineering personnel can assist in the selection of the proper throughput option for your system.

The Large Split Sprue Bar is available in an Offset configuration only

System Type	Description	Sizes available	Section View
Inline	The Split Sprue Bar is located on the centerline of the mold and is directly fed by the machine nozzle	Medium 2068 bar [30k psi]	
Offset	An offset system allows the Split Sprue Bar unit to be positioned freely in the mold frame. A transfer manifold routes the feed from the machine nozzle to the Split Sprue Bar unit	Medium (Transfer manifold) 2068 bar [30k psi] Large (Transfer manifold) 1861 bar [27k psi]	

Section View

Minimum Shutheight

- Medium Split Sprue Bar = 200mm [7.87"]
- Large Split Sprue Bar = 216mm [8.50"]

Projects require application review prior to quoting, call Hot Runner Sales Support team for pricing

Max Throughput (g/sec.)

		Medium	Large
>	Low	800	1100
osit	Medium	600	900
Viscosity	High	300	600

Material Compatibility

Resin	UH-VG
PE (HDPE, MDPE, LDPE, LLDPE)	\checkmark
PP	✓
PS, GPPS, HIPS	✓

✓– Compatible ◇– Contact HUSKY

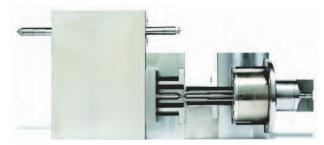
For other material grades, please contact HUSKY

General Molder Considerations

Operating a Split Sprue Bar, the molder might observe some performance differences compared to a Conventional Sprue Bar. For certain applications, this could include an expected temperature overshoot at the split line of the Split Sprue Bar, caused by shear.

Husky recommends

- The end user to stock at least one of each custom item. Husky will quote the parts that are recommended to have on-hand
- That each Split Sprue Bar valve stem gets controlled by a separate air circuit in order to shut the center section stem first (after machine decompression) and then the stationary side one, 0.2 seconds later
- To lap each Split Sprue Bar stem to the corresponding tip for a very good fit. This is done on new systems before leaving Husky
- To reduce the carriage pressure as much as possible during mold open, while still maintaining a positive seal. This eliminates the additional stress on the molds stationary half
- The inlet diameter of the machine injection nozzle to be 14.29mm [0.56 in]. This applies only for or inline split sprue bars
- To adjust the mold protection to compensate / overcome the additional load of approximately 1,000 lbf (4,448 Newton) that will be generated during the last one millimeter of mold closing stroke


Area	Detail	Action	When	
	Main Sprue and Locating Ring	Inspect for visible	Weekly	
	Split Sprue Bar Split Line	damages; remove and clean resin deposits	Daily for the first week of operation, then extended steps (to establish timing)	
Split Sprue Bar General		Inspect interface for potential weepage and clean up	Daily for the first week of operation, then extended steps (to establish timing)	
	Sliding Bushing and Nozzle Base	Clean bushing and visually inspect for damages	2M Cycles or 12 Months	
		Replace Sliding Bushing and Inspect Nozzle Base	4M Cycles	
	Wedge Collars	Replace Wedge Collars	4M Cycles	
		Inspect for potential weepage and clean up	2M Cycles or 12 Months	
	Sprue Body	Replace Piston Seals, O and C rings	2M Cycles	
Stationary Side Split Sprue Bar		Clean Stem and visually inspect for damages	2M Cycles or 12 Months	
	Split Sprue Bar Nozzle Tip	Clean Stem and visually inspect for damages	2M Cycles or 12 Months	
		Husky Refurbishment	4M Cycles or 37 Months	

Additional molder and moldmaker information is available from Husky

Preventive Maintenance - Hot Runner & Split Sprue Bar

Area	Detail	Action	When	
Center Section		Clean and visually inspect for damages	2M Cycles or 12 Months	
Split Sprue Bar	Split Sprue Bar Valve Stem S/A	Replace Piston Seals	2M Cycles	
		Husky Refurbishment	4M Cycles or 37 Months	
		Inspect for visible damage	Weekly	
Electrical Interface	Connector Inserts and Connector Hoods	Measure heater resistance, isola-tion resistance and ground wire connection of all heating ele-ments	2M Cycles or 12 Months	
Nozzle Front	Nozzle Tip, Tip Insulator, Nozzle Heater and	Visually inspect for damages; clean resin deposits at sealing interface	2M Cycles or 12 Months	
	Thermocouple	Husky Refurbishment	4M Cycles or 37 Months	
	General	Inspect for potential weepage and clean up	2M Cycles or 12 Months	
		Clean and visually inspect for damages	2M Cycles or 12 Months	
	Valve Stem S/A	Replace Piston Seals	2M Cycles	
Pocket Manifold		Husky Refurbishment	4M Cycles or 37 Months	
	Back-up Pad	Clean weepage holes	2M Cycles or 12 Months	
	back-up rau	Visually inspect	2M Cycles or 12 Months	
	C-Rings	Replace	After each back-up pad removal	
	Guide Pins	Visually inspect and Grease	After each latch over	
	Guide PIIIs	Husky Refurbishment	4M Cycles or 37 Months	

- The PM intervals are an initial recommendation of Husky, based on other applications, utilizing the same hardware
- The application itself (resin, pressures, temperatures, ...) and the processing environment do significantly impact the final cleaning or replacement cycle for a Molding System
- We will work with our Split Sprue Bar Customers to further optimize and precise those recommendations in order to achieve the best compromise between cost control and production security

UNIFY

In this section:

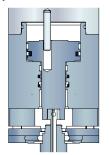
Page

10-1	Overview
10-2	System Details
10-3	Installation Reference
10-5	Stem Stroke
10-6	Plate Configuration

Overview

Ideal for Automotive parts

- One step installation
- Easy maintenance: one step removal from the mold
- Leak-proof UltraSeal technology
- Available with new hydraulic or pneumatic valve stem actuator
- Dedicated and independent connector plates for water, oil or air, and electric wires
- Electrical-water-oil or air connectors can be installed to meet customer requirements
- Nozzles are positioned to perfectly fit the mold seat
- No need to heat the system during installation
- No need to align nozzle with seat
- Reduced risk of damage to the tips during installation

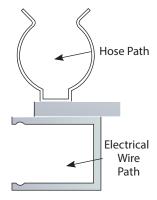

Back

Front

- Customized, rigid services frame:
- · Matches the manifold and mold layout
- Easy handling of the system during installation and maintenance
- Connector plates rigidly fixed to the frame
- If system is more than 12 drops please contact Husky

System Details

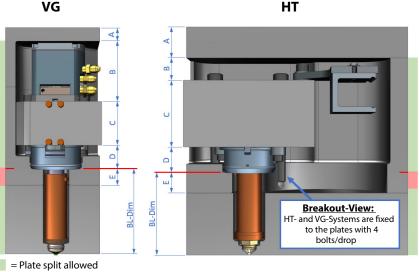
- Actuator: easy to install and maintain
- Integrated cooling lines for hydraulic actuation
- · Keyed stem and piston
- Easy to remove: allows fast access to stem without exposing hydraulic oil


UNIFY

System Details

System Details

- Leak-proof retaining system
- Husky standard nozzle stack
- Proven performance



- Standard clips for wire and hose:
 - Easy to replace
- Independent paths for wire and hoses:
 - Easy to maintain separately

UNIFY - System Details

Installation Reference

VG

= Plate split not allowed to support introduced forces

— = Mating surface

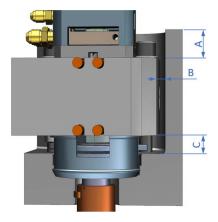
Note: The VG-actuator does not provide backup support for the manifold and should have some clearance to the backing-plate.

Additional information about "Plate split", please refer to "UNIFY Plate configuration" in this section.

Nozzle Size	Gate Style	Actuation	А	В	C	D	E	BL Dim
Ultra 1000	VG	Hydraulic		104mm [4.09"] W/2mm [.07"] Shim	45-80mm [1.7717"]	35mm [1.37"]	25mm [0.98"]	71-315mm [3.03 - 12.4"]
Ultra 1000	VG	Pneumatic		84.5mm [3.32"]	45-80mm [1.77 - 3.17"]	35mm [1.37"]	25mm [0.98"]	71-315mm [3.03 - 12.4"]
Ultra 1000	нт	None		18mm [0.70″]	45-80mm [1.77 - 3.17"]	27mm [1.06"]	25mm [0.98"]	71-315mm [3.03 - 12.4"]
Ultra 750	VG	Hydraulic (Large)	min. 5mm [0.19"]	104mm [4.09"] W/2mm [.07"] Shim	40-80mm [1.57 - 3.17"]	31mm [1.22"]	17mm [0.66"]	48-300mm [1.61 - 11.8"]
Ultra 750	VG	Hydraulic (Small)		89.2mm [3.51"] W/1.5mm [.06"] Shim	40-80mm [1.57 - 3.17"]	31mm [1.22"]	17mm [0.66"]	48-300mm [1.61 - 11.8"]
Ultra 750	VG	Pneumatic		82mm [3.22"]	40-80mm [1.57 - 3.17"]	31mm [1.22"]	17mm [0.66"]	48-300mm [1.61 - 11.8"]
Ultra 750	HT	None		14mm [0.55″]	40-80mm [1.57 - 3.17"]	25mm [0.98"]	17mm [0.66"]	51 - 300mm [2.0 - 11.8"]

A = min. Steel condition

UNIFY

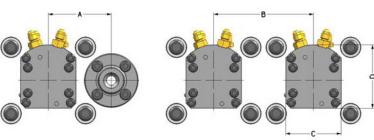

b = Cylinder height (VG) or bolt head height (HT)

C = Manifold thickness

D = Nozzle retainer height

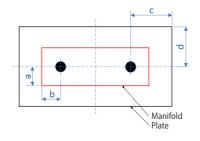
E = min. steel thickness below insulator

Default Air-Gaps


Default UNIFY Air-Gaps (for reference only)

Location	Gap Distance
A	26.0mm [1.023"]
В	5.0mm [0.19"]
С	17.0mm [0.67"]

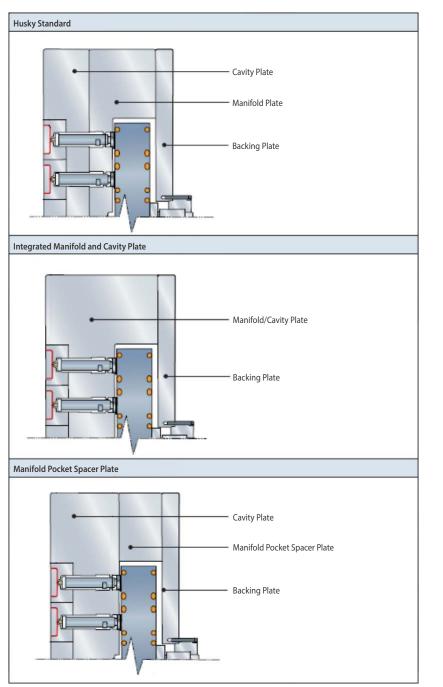
Note: Provided Air-Gaps are for information only.


Specific details can be found on the project-related documentation.

Manifold Leg

Nozzle Size	Gating Style	Actuation	Stroke	A	В	С	D
Ultra 1000	VG	Hydraulic	13.8mm [0.54"]	76.2mm [3.00"]	120.65mm [4.75"]	67mm [2.63"]	76.5mm [3.01"]
Ultra 1000	VG	Pneumatic	13.8mm [0.54"]	76.2mm [3.00"]	120.65mm [4.75″]	67mm [2.63"]	76.5mm [3.01"]
Ultra 1000	HT	None	None	76.2mm [3.00"]	101.6mm [4.00"]	None	None
Ultra 750	VG	Hydraulic (Lg)	13.8mm [0.54"]	76.2mm [3.00"]	120.65mm [4.75"]	67mm [2.63"]	76.5mm [3.01"]
Ultra 750	VG	Hydraulic (Sm)	12.42mm [0.48"]	63.5mm [2.50"]	101.6mm [4.00"]	53mm [2.09"]	64.5mm [2.53"]
Ultra 750	VG	Pneumatic	12.42mm [0.48"]	63.5mm [2.50"]	101.6mm [4.00"]	55mm [2.16"]	80mm [3.15″]
Ultra 750	HT	None	None	63.5mm [2.50"]	76.2mm [3.00"]	None	None

Plate Sizing



Dim	Value	min	Description
a	65mm	[2.55"]	Drop to Manifold-Edge
b	65mm	[2.55"]	Drop to Manifold-Edge
с	175mm	[6.89"]	Drop to Plate-Edge (not in direction of the VG-Actuation)
d	235mm	[9.25"]	Drop to Plate-Edge (required for VG-Hose access)

UNIFY - Stem Stroke

	Large Hydraulic	Small Hydraulic	Large Pneumatic	Small Pneumatic	Small Hydraulic Short Stroke
Stem Stroke	13.6mm	12.4mm	13.6mm	12.4mm	7.4mm
	[0.53″]	[0.48″]	[0.53″]	[0.48″]	[0.29"]

UNIFY Plate Configuration

UNIFY

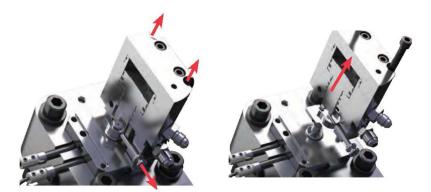
In this section:

Page

11-1	Overview
11-3	Installation Reference

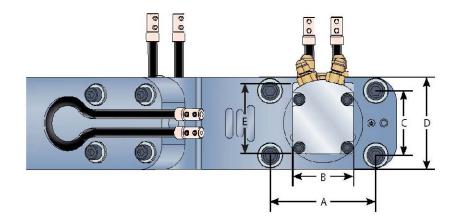
Overview

Perfect to mold parts with optical or high aesthetic requirements

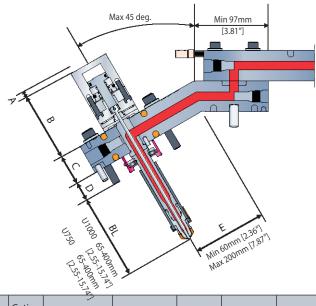

- Ideal for Automotive Lighting applications
- Angled manifold to place the Nozzle in the best gating position for the part
- Lucent[™] includes UltraSeal[®] technology with a 3 years leak-proof warranty
- Easy installation: manifolds are bolted directly on the cavity
- Independent actuators available in Pneumatic and Hydraulic versions
- Easy access and maintenance

Easy Maintenance, simple Actuator Removal

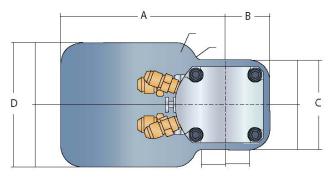
- Full access to the stem
- Do not require to uninstall the system from plates / mold

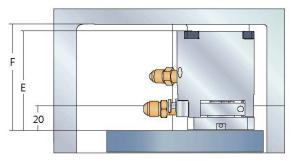


Overview


Main Technical Features

- 1. Specialized steel and proprietary coating to avoid polycarbonate degradation
- 2. New shoulder designed to minimize the thermal losses
- 3. Jacket heaters easy to replace
- 4. Nozzle tip design with four different material combinations leads to best thermal insulation and the lowest dissipation with the mold


Nozzle Size	Gating Style	Actuation	Stroke	A	В	с	D	E
Ultra1000	VG	Hydraulic	13.8mm [0.54"]	96mm [3.78"]	67mm [2.64"]	58mm [2.28"]	85mm [3.35"]	76.5mm [3.01"]
Ultra1000	VG	Pneumatic	13.8mm [0.54"]	96mm [3.78"]	67mm [2.64"]	58mm [2.28"]	85mm [3.35"]	76.5mm [3.01"]
Ultra 1000	нт	None	None	96mm [3.78"]	None	58mm [2.28"]	85mm [3.35"]	None
Ultra 750	VG	Large Hydraulic	13.8mm [0.54"]	92mm [3.62"]	67mm [2.64"]	54mm [2.13"]	80mm [3.15"]	76.5mm [3.01"]
Ultra 750	VG	Small Hydraulic	12.42mm [0.48"]	92mm [3.62"]	53mm [2.09"]	54mm [2.13"]	80mm[3.15"]	64.5mm [2.53"]
Ultra 750	VG	Small Hydraulic (Short Stroke, APP)	7.42mm (APP) [0.29"]	92mm [3.62"]	53mm [2.09"]	54mm [2.13"]	80mm [3.15"]	64.5mm [2.53"]
Ultra 750	VG	Pneumatic	12.42mm [0.48"]	76mm [2.99"]	55mm [2.17"]	54mm [2.13"]	80mm [3.15"]	80mm [3.15"]
Ultra 750	HT	None	None	76mm [2.99"]	None	54mm [2.13"]	80mm [3.15"]	None


Nozzle Size	Gating Style	Actuation	Stroke	A	В	С	D
Ultra1000	VG	Hydraulic	13.8mm [0.54"]		103.5mm [4.07"] W/1.5mm [0.06"] Shim		26.5mm [1.04"]
Ultra1000	VG	Pneumatic	13.8mm [0.54"]		84.5mm [3.32″]	45-60mm [1.77-2.36"]	26.5mm [1.04"]
Ultra 1000	ΗT	None	None		18mm [0.70"]		18.75mm [0.74"]
Ultra 750	VG	Large Hydraulic	13.8mm [0.54"]	5mm	103.5mm [4.07"] W/1.5mm [0.06"] Shim		22.623mm [0.89"]
Ultra 750	VG	Small Hydraulic	12.42mm [0.48″]	[0.19"]	89mm [3.5"] W/1.5mm [0.06"] Shim		22.623mm [0.89"]
Ultra 750	VG	Small Hydraulic (Short Stroke, APP)	7.42mm (APP) [0.29"]		79mm [3.11"] W/1.5mm [0.06"] Shim	40-60mm [1.57-2.36"]	22.623mm [0.89"]
Ultra 750	VG	Pneumatic	12.42mm [0.48″]		82mm [3.22"]		22.623mm [0.89"]
Ultra 750	ΗT	None	None		14mm [0.55″]		16.623mm [0.65"]

11-4 Hot Runner Product Handbook v 19.3

Bolted Manifold System

Nozzle Size	А	В	С	D
Ultra 1000	120mm	38.5mm	77mm	95mm
	[4.72"]	[1.51"]	[3.03"]	[3.74"]
Ultra 750	120mm	32.5mm	65mm	90mm
	[4.72"]	[1.27"]	[2.55"]	[3.54"]

Nozzle Size	Actuation	С	D
Ultra 1000 -	Pneumatic	84.6mm [3.33"]	90mm [3.54"]
	Hydraulic	103.4mm [4.07"]	109mm [4.29"]
Ultra 750	Pneumatic	82.2mm [3.21″]	88mm [3.46"]
	Hydraulic	103.4mm [4.07″]	109mm [4.29"]
	Small Hydraulic	89.2mm [3.51″]	95mm [3.74"]
	Hydraulic Short Stroke (APP)	79.2mm [3.11″]	85mm [3.34"]

In this section:

Page

12-1	Liquid Silicone Rubber (LSR)
12-3	Bioplastic (PLA: Polyactic acid)
12-4	CSVG - Compact Stack Valve Gate
12-6	UltraShot™ Injection System
12-9	UltraMelt™
12-10	. UltraSync - Valve Stem Reversible Decoupling

Liquid Silicone Rubber (LSR)

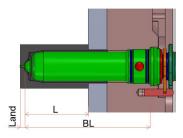
System Information

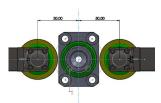
- Fully optimized cold-deck or manifold-system tailored to customer or application specific requirements.
- Different manifold design options enable injection pressure resistance up to 1800 bar.
- System offering up-to 16 drops/cavities
- 4 standard nozzle lengths
- 3 standard gate diameters (0.8mm, 1.0mm, 1.2mm)
- 1 standard land length (2.5mm)

Features

- Well isolated system using
 - Thick, high compression resistant insulator-board
 - Water-cooled sprue bushing with easy adjustable and replaceable machine interface
 - Cooling components are monitored to ensure a better thermal management, avoiding overheating the cold deck
- Actuated via LX or EX Air-Piston
- · Balanced filling through individually adjustable actuators
 - Individual air-line controlled by solenoid valves
 - Optional mechanical or electrical stroke adjustment mechanism
- Leak-Free Operation
 - Nozzle tips are always in contact with the Cavity without losing the required preload
- Easy maintenance
 - o Manifold runner is gun-drilled or split-milled for easy maintenance
 - Plugs are re-positioned easily due to specific alignment features/methods
 - o Nozzle components are easily removable / replaceable
 - o Clogging in the cooling circuit can be removed, if necessary, by simply exchanging the components.

Liquid Silicone Rubber (LSR)


System Information



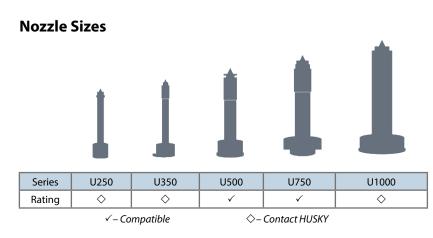
Nozzle Length

Nozzle-Length	Min	Max	
L-Dimension	20.0 mm [0.787"]	110.0 mm [4.330"]	
BL-Dimension	66.5 mm [2.618"]	136.5 mm [5.374"]	

Sprue-Clearance

Minimum clearance at injectionposition is dependent on the pitch layout. A minimum of 50.0mm is required as shown to the right.

Pitch-Spacing


Actuation Method	Min	
LX - Actuation	50.0 mm [1.97"]	
EX - Actuation	59.0 mm [2.32"]	

Bioplastic (PLA: Polylactic acid)

Bio-resins require special attention and have a unique set of needs. Set guidelines have been established by Husky through experience and testing to understand these characteristics and mitigate risk. Specific actions must be taken to ensure system performance and tool longevity.

-		Rating
	HT	\diamond
	VG	~
Gate / Tip-Style	UH-VG, T1, T2	\checkmark
	UHP-VG	\diamond
	SG	\diamond
	Plunger	\checkmark
VG Shutoff-Type	Taper	\diamond
	SCVG	~
	SX	\diamond
Actuation	LX	~
	EX	~
	USync	\checkmark
all types	all types	\diamond
	2 to 48 Drops	~
HR-Size	> 48 Drops	\diamond
√– Compatible	◇– Contact HUSKY	

Nozzle Compatibility

CSVG - Compact Stack Valve Gate

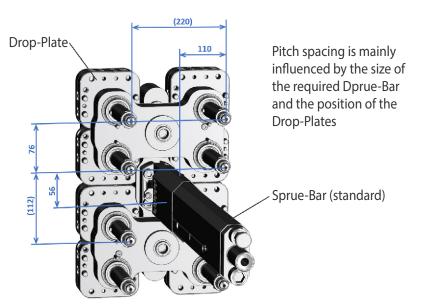
System Information

CSVG is a reduced shutheight back-to-back stack valve gate actuation designed to align with industry standards in the packaging market, to fit existing handling and take-off equipment.

- Pneumatic-drive hot runner or manifold system, engineered to satisfy requirements specific to customer or application.
- Designed for Ultra 500 and Ultra 750 nozzles
 - o Compatible with Ultra Helix VG Packaging nozzle tip
 - o Compatible with Reduced Clearance Coated Stem (RCCS)
- Maximum of 16 cavities (2 x 8 stack)
- Standard pressure limits (1800 bar / 26,000 psi)
- 7.4mm valve stem stroke
- Compatible with Corrosive and Packaging guidelines

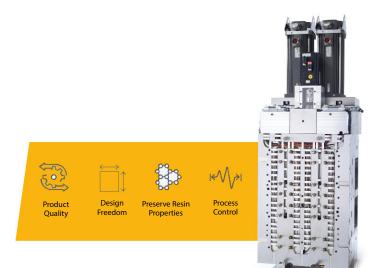
- Standard performance-proven components:
 - Sprue Bars
 - Small, medium, and large
 - Standard sprue bar
 - Split sprue bar
 - Manifolds
 - Nozzles components
- Two-plate design
 - No center plate required
 - Resulting shutheight is significantly reduced compared to typical three-plate back-to-back systems

CSVG - Compact Stack Valve Gate


Technical Details

Shut-Height

Minimum Shut-Height Comparison		
LX - B2B-System LX - CSVG-System		
265mm [10.43"] 200mm [7.87"]		


Pitch-Spacing

UltraShot™ Injection System

System Information

- Precise, servo-controlled injection system
- Enables unprecedented part design possibilities due to
 - o reducing the influence of resin compressibility
 - o unmatched control of cavity filling
 - o industry-leading balance for critical parts
 - o exceptional part quality
- Stress-free material processing without changing resin properties
- System offering up to 128 drop/cavities

Features

- Increased injection control managed by Altanium UltraShot controller
 - Manages process peak pressures, allowing use of machines with lower pressure capability
- Reduced residence time
- Greater production consistency
 - Enables increased cavitation for technically challenging applications
- Improved process monitoring and data logging
- Enhances molding capability for complex and critical features
- Exceed L/T limitations

New Technologies

Conventional Hot Runner UltraShot™ Injection System: L/T = 140

UltraShot™ Injection System

Plate Requirements

Ul	traShot Plate And Space	Requireme	ents
Dim.	Description	2-32 Drop	48-128 Drop
A	Top row of drops to edge of manifold plate	100mm [3.93″]	100mm [3.93"]
В	Bottom row of drops to edge of manifold plate	100mm* [3.93″]	100mm* [3.93"]
С	Outer column of drops toside edge of manifold plate	200mm [7.87"]	250mm [9.84"]
D	Minimum assembly width	500mm [19.68"]	650mm [25.59"]
E	Minimum assembly height	1500mm [59.05″]	1800mm [70.86"]
* With	* With clamp slots only. Direct bolting or additional cut outs		
require	review Contact Husky factory fo	or motor mour	nting
on side	or top/bottom		

Actuation Option & Space Requirements

The possible drive variant depends on several factors and is verified by the design department during a technical-approval. The possible drive variant depends on several factors and is checked by the design department.

UltraShot[™]Injection System

Direct-Drive Details

- Generally used for:
 - o Low cavitation Systems
 - o Low cavity fill pressures
 - o Small part weights
- Simple approach using fewer components
- Motor- and shooting pot plunger-axis aligned, motor exposed to full plastic pressure.
- Mounted to Top and/or Bottom of the hot-runner requiring 700-900mm additional space on each side.

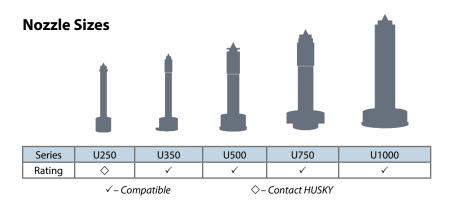
Cam-Drive Details

- · Generally used for:
 - o High cavitation Systems
 - o High cavity fill pressures
 - o Large part weights
- Complex actuation system using a lot of components
- Motor sees a fraction of the pressures in the melt-stream due to the cam-drive-mechanism.
- Mechanics increase the system shutheight by 300mm (Back-Mounted-System)
- Mechanics increase the width of the system by 150-300mm each side

(OP/NOP Side-Mounted-System)

New Technologies

UltraMelt™


System Information

- UltaMelt[™] is a premium solution for thermally sensitive or corrosive applications
- Suitable for very small technical or medical parts
- Ultramelt follows the same product configuration/specifications as our standard hot runners products including:
 - o Identical pitch spacing, nozzle length and nozzle throughput
 - o Same cavitation sizes

Features

- Excellent process and thermal control, with minimal impact on resin chemistry
- Engineered for resins that are sensitive to temperature and corrosion such as:
 - o PC
 - o PVC
 - o PLA
 - o PHA
- A design that focuses component performance and longevity

UltraSync - Valve Stem Reversible Decoupling

Advantages

- Allows the ability to "disable" a drop or cavity by disengaging the valve stem through turning off nozzle heater power.
- Thermal control allows "reversible" stem decoupling replacing singleuse mechanical parts and access procedures to disengage and reengage the valve stem from the actuation plate
- Typically allows valve stem access from the back of the hot runner for easier stem and coil spring replacement

Note

There are multiple application specifications including resin type, pitch spacing and plate size requirements that are reviewed when specifying this design. Each design is also specially tuned for every application.

Valve-Stem open Engaged in system

Valve-Stem closed Engaged in system

Valve-Stem closed Decoupled from system

In this section:

Page

13-1	Flow Simulation
13-2	Refurbishment

Flow Simulation

Flow Simulation Service Capabilities

Consulting Services

Husky's Flow Simulation Center (FSC) offers a full range of flow simulation consulting services to evaluate the filling, packing and cooling phases of the injection molding process and predict part warpage upon ejection. See the capabilities chart for a complete listing of our offerings. A customized report of the provided service will be supplied to the customer.

	MPA (Basic fill analyst)	MPI (Advanced fill services)
Cavity Pressure	X	Х
System Pressure		Х
Identify Filling Issues		Х
Air Trap Location		х
Air Trap Elimination		Х
Weld Line		Х
Weld Line Elimination		Х
Hot Runner Balancing		Х
Gate Location Optimization		Х
Clamp Tonnage Prediction		Х
Cooling Optimization		Х
Warpage Prediction		Х
Material Selection/Optimization		Х
Injection Time Evaluation	Х	Х
Sequential Gating		Х
Wall Thickness Optimization		Х
Cold Runner Optimization		Х
Packing Phase Simulation		Х
Cooling Phase Simulation		Х
Core Deflection		Х

Services

• MPA is intended for **fast validation** of a model during part design

- Results are best suited for part with low to medium complexity
- MPI is intended for optimization of the part and mold
 - Provides significantly more detailed results
 - Addresses complex part designs

For more information contact your Hot Runner Sales Support Flow Simulation Team

Refurbishment

Manifold & Components (no plates)

Manifold cleanings is a joint maintenance effort between the customer and Husky. The customer performs a complete disassembly of the project and sends the manifolds and stack components to Husky for cleaning and inspection.

Components to be returned

Manifold(s), Manifold bushings, Manifold backup pads, Sprue bushing/ Sprue bar, Nozzle housings, Nozzle stacks, Electrical components, Valve Stems (VG)

Complete Hot Runner

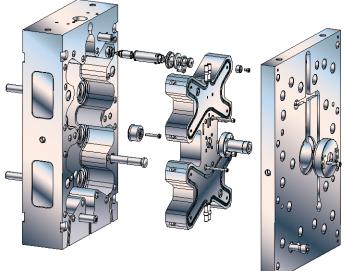
Husky's hot runner cleaning service offers a complete hot runner cleaning with component replacement on an "as needed" basis. Husky performs a complete disassembly and inspection of the hot runner followed by a recommendation for replacement parts or rework.

Components to be returned

Complete hot runner

Platinum refurbishment for Hot runner systems

Additional to HUSKY's complete Hot runner refurbishment your system can be handled with platinum approach. This provides you, additional to the standard refurbishment services, with following advantages

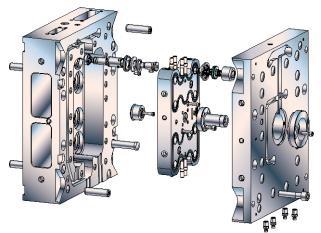

- Up to 50% reduction on lead-time
- Fixed cost agreed upfront
- Renewal of all wear items critical to function of the hot runner
- Renewal of the 3 year "LEAK FREE" warranty

Components to be returned

Complete hot runner

Refurbishment

Hot Tip



Maintenance Task	6 Months	1 Year	3-4 Years
Clean and visually inspect nozzle tip insert, tip retainer seal-off diameter, and tip insulator	✓		
Clean and visually inspect sprue bushing	\checkmark		
Perform a meter check on all electrical against the provided electrical schematic	~		
Remove manifold backing plate; Visually inspect for plastic leakage		\checkmark	
Remove water fittings and check for corrosion deposits within channels; Analyze water if necessary		✓	
Clean and visually inspect locating ring		\checkmark	
Inspect manifold heater and heater insulation		\checkmark	
Remove manifolds and nozzle stacks from plates; Clean and inspect melt channels.			~
Replace center locating insulator, nozzle disc springs, and back up pads			~
Replace nozzle tip inserts, tip retainers, and tip insulators			\checkmark
Remove sprue bushing; Clean melt channel and rework spherical radius			~
Replace sprue heater and thermocouple			\checkmark

Services

Refurbishment

Valve Gate

Maintenance Task	6 Months	1 Year	3-4 Years
Clean and visually inspect nozzle tip retainer, tip insulator, and valve stem	\checkmark		
Clean and visually inspect sprue bushing	\checkmark		
Perform a meter check on electrical components; Verify electrical readings to electrical schematic	\checkmark		
Remove manifold backing plate; Clean plastic leakage around valve gate back up pad/ manifold surface	~		
Remove valve gate cylinder and piston assembly; Clean and visually inspect air sealing surfaces	\checkmark		
Clean and inspect valve gate piston; Replace valve gate piston seal		~	
Remove water fittings and check for corrosion deposits within channels; Analyze water if necessary		~	
Clean and visually inspect locating ring		\checkmark	
Inspect manifold heater and heater insulation		\checkmark	
Remove manifolds and nozzle stacks from plates; Clean and inspect melt channels.			~
Replace center locating insulator, nozzle disc spring, and back-up pad			\checkmark
Replace nozzle tip retainer, tip insulator, and valve stem			\checkmark
Remove sprue bushing; Clean melt channel and rework spherical radius			\checkmark
Replace sprue heater and thermocouple			\checkmark

In this section:

Page

14-1	Controller Overview
14-4	Altanium Hot Runner Temperature Control
14-6	Additional ART 2.0 Advantages
14-7	Key Advantages
14-12	FTO (Finish to Order)
14-13	Dimensions

General Controller Information

Controller Overview

Altanium Operator Interfaces

Neo5*

- 1-48 Zones
- Full featured hot runner temperature control
- Optimized for 2-16 Cavity Applications
- 10" Color Touchscreen

Delta5**

1-128 Zones

- Full featured HR temperature control and optional UltraSync-E or Valve Gate Sequencer control.
- Optimized for 24-96 Cavity
 Applications
- 15.6" Color Touchscreen

Matrix5***

1-255 Zones

- Full featured HR temperature control w/ optional integrated UltraSync-E, Valve Gate Sequencer, Individual Servo Valve Gate or Mold Servo Control
- Optimized for >96 Cavity Applications
- 22" Color Touchscreen

Altanium Cards and Mainframes

H-Series Control Cards	Interchangeable Across all Configurations 4z 5A, 2z 16A and 1z 30A
Neo5 Compact Mainframes	Small Foot Print with Integrated Interface Up to 42z
Free Standing Mainframes	Standard and Custom Configurations Up to 255z

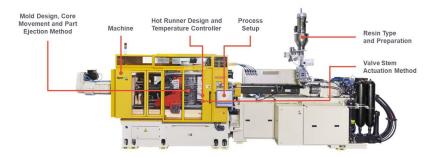
*Neo5 can be retrofitted to existing 1-48 zone controllers (X, C, CX & A)

**Delta5 can be retrofitted to existing 1-128 zone controllers (X, C & CX only)

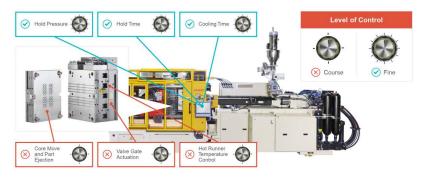
***Matrix5 can be retrofitted to existing 1-254 zone controllers (X, C & CX only)

<u>All controllers have a 5 year warranty</u>; this includes the interface, cards and mainframe.

Cards are in the process of being switched over from green to red

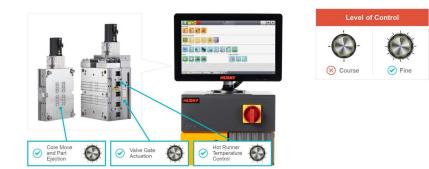

Controller Overview

Altanium is a Complete Mold Control Solution



Systematic Elimination of Process Variability

- · Many Factors Impact Part Consistency and Quality
 - Altanium addresses the mold control aspects of the process:
 - hot runner temperature control, valve stem actuation, part demolding and ejection

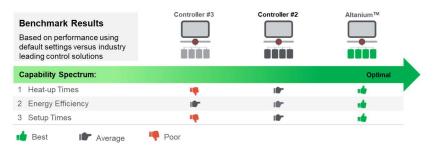

• The machine is optimized to control certain portions of the molding process very well, but not those associated with the hot runner system and the mold

Controller Overview - Continued

Systematic Elimination of Process Variability-Continued

 Adding an Altanium Mold Controller and electrifying mold movements provides a finer level of control beyond the machine's capabilities, delivering added adjustability to minimize process variability further

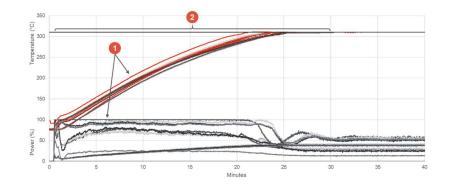
Good mold control helps molders to reduce scrap and increase yields



• Altanium is a building block within an injection molding system that eliminates variability within the mold by accurately and consistently controlling the melt temperature, valve stem actuation, part demolding and part ejection

Altanium Hot Runner Temperature Control

ART 2.0 - Second Generation Active Reasoning Technology

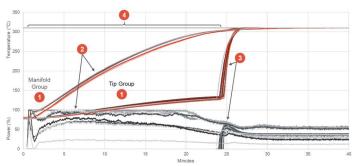

 ART 2.0 is a second-generation control algorithm enhancing Altanium's best-in-class hot runner temperature control

 With ART 2.0, Altanium now incorporates more advanced auto-tuning and heat-up strategies, which delivers the industry's best out-of-thebox performance

UniStart

Default heat-up mode for even thermal expansion and fastest startup times

UniStart


- 1. Slowest heating zone is allowed to saturate providing full power during heat-up while all other zones follow
- 2. Saturating the slowest zone allows it to get to setpoint as fast as possible while still achieving even thermal expansion

Altanium Hot Runner Temperature Control-Continued

ART 2.0 - Second Generation Active Reasoning Technology

AltaStart

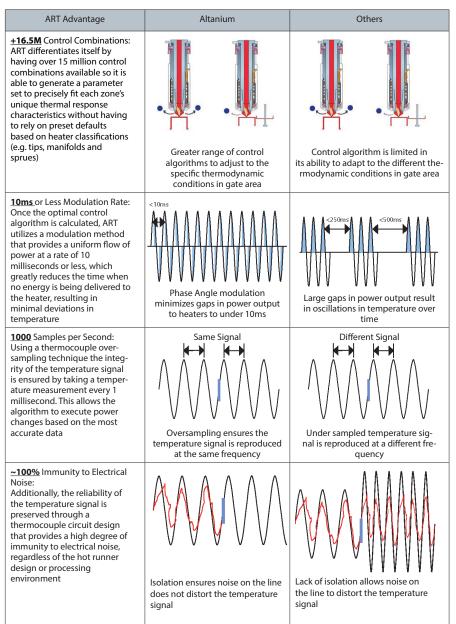
Complimentary heat-up mode for reduced energy usage and residence time of plastic in nozzles during startup

AltaStart

- 1. Zones are automatically classified as manifolds and tips based on their thermal response
- 2. After zones have been classified and grouped, AltaStart applies power to only the slowest reacting group first
- 3. Faster reacting groups are then powered on at the optimal time to ensure all zones in the system reach setpoint simultaneously
- 4. Classifying zones into groups and staggering when they are powered on delivers lower energy usage and reduced residency time in nozzles during heat-up

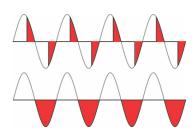
ART 2.0 Key Advantages

 Test results show that ART 2.0 with UniStart and AltaStart provides faster heat-up times, less energy usage, and faster setup times than existing temperature control solutions



 ART 2.0 elevates Altanium to the most accurate and precise temperature controller available, eliminating variability in the molding process shotafter-shot and on mold-after-mold resulting in significant monthly savings

Benchmark Results Based on 4 startups per month with a \$28 per hour labor rate and a per part profit of \$0.06	Controller #3	Controller #2
Performance Area	Controller #3	Controller #2
Heat-up and Stabilization Time	42% Slower	34% Slower
Energy Usage	30% More	24% More
Setup Time	64% Slower	56% Slower
Total Altanium Monthly Savings	+\$782	+\$533


Additional ART 2.0 Advantages

ART 2.0 delivers tighter control & less variability while at processing set-point utilizing the following technology:

Phase Angle and Zero-Cross Power Modulation

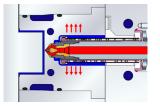
- Altanium provides the ability to switch between Phase Angle and Zero Cross power control for each zone
 - Phase Angle: Uniform flow of power reducing time that no energy is being supplied to the heater and ability to limit applied voltage
 - -Zero Cross: Switches at 0V eliminating electrical noise that can disturb sensitive equipment on or adjacent to the controller supply lines

Phase Angle: Fast, uniform power delivery

Zero Cross: Noise free power modulation

- Benefit
 - -Optimized power delivery to heaters based on the conditions under which the controller is operating and the heaters thermal response
 - Provides optimal method for extending heater life by applying low voltage to evaporate moisture trapped in the heater body

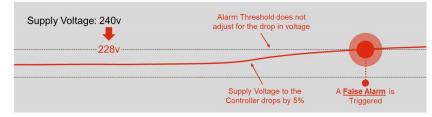
Result Phase Angle Heat is applied evenly and Voltage is gradually evaporating moisture constantly while reducing arcing 120V Peal falling Voltage is applied for short duration Result Zero Cross Heat is applied abruptly and for long durations contributing to Voltage is applied 340V Peak for long duration arcing and premature failure Voltage is rising

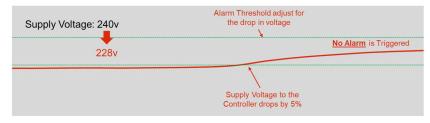

Wet Heater Low Voltage Bake-out

Automated Mold Diagnostics

- Altanium is capable of real-time current and voltage measurements providing the ability to test for and identify issues associated with the following items:
 - Supply voltage and current delivery to each heater
 - Thermal response and correct electrical wiring
 - Open, reversed or pinched thermocouples
 - KWH usage per mold
 - Resistance and Wattage measurement for each heater
 - Zone to zone thermal analysis
- Benefit
 - Faster and more accurate diagnosis of mold problems, reducing down time
 - Accurate accounting of power usage and associated cost, better cost per part calculations
 - Soft rewiring of miswired molds, increasing up-time

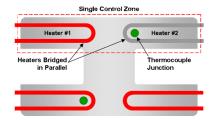
Power Deviation Alarm


• The real-time power deviation monitoring feature provides early warning detection of resin leaks in the gate area and nozzle bore


- As plastic fills the nozzle bore, it will increase the heat losses to the gate insert and can unseat or coat the thermocouple connection in the nozzle body
- This condition will result in a sharp increase in duty cycle to maintain setpoint
- The Altanium monitors these variations in real-time and triggers a power deviation alarm to alert the user of a possible leak in the gate area or nozzle bore
- Altanium also monitors changes in supply voltage as part of the Power Deviati Alarm
 - Altanium automatically adjust alarm thresholds when a change in voltage occurs, preventing false alarms
 - This is possible because the controller monitors the tip zones individually and as a group
 - A voltage drop affects all zones in a group equally, so the controller knows this is not a leak

Power Deviation Alarm- continued

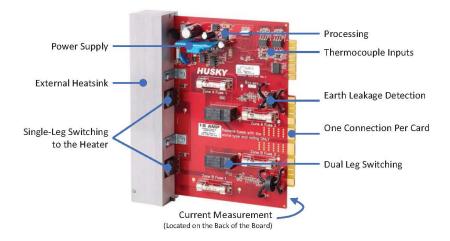
A 5% drop in supply voltage will result in a 3% increase in power to the heater If the threshold values are not adjusted to compensate for drop a false alarm can occur


Altanium compensates for changes in voltage by adjusting alarm thresholds to avoid false alarms

- Benefit
 - Decreased downtime and operating costs

Heater Failure Detection

• The real-time current deviation monitoring feature is ideal for detecting a failed heater on a zone configured using multiple heaters in parallel being controlled by a single thermocouple

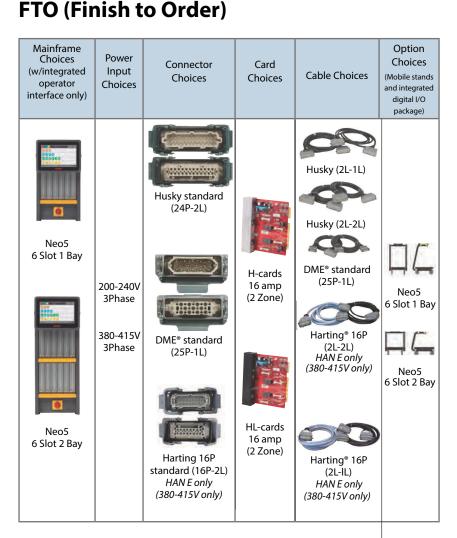


- If one of these heaters were to fail, it would be difficult to detect the specific location of the problem
- Additionally, the functional heater would increase its current draw to compensate for the loss of the second heater and overheat the surrounding steel and degrade the resin
- The Altanium monitors these variations in real-time and triggers a current deviation alarm to alert the user of a possible heater failure in the mold

- Benefit
 - Reduce downtime by detecting leaks in the gate area earlier
 - Fix issues before mold is damaged or part quality is compromised

Increased Reliability and Lower Energy Usage

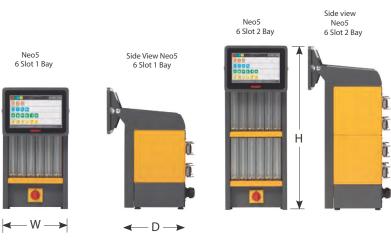
- H-Series control cards are designed to minimize connections and components while providing the lowest cost of ownership by allowing one card type to be used interchangeably with all Altanium controllers
- H-Series control cards employ externally mounted heat-sinks and single-leg switching to the heater that reduces internal cooling fans and the voltage drop across devices, minimizing the amount of energy consumed



Mitigate Risk of Mold Damage and Resin Degradation

Closed-loop digital interlocks between Altanium and the IMM protect the molding process by reducing the need for operator dependent actions

- AT-Temperature Output to IMM:
 - Connects to a signal in the IMM to prevent injecting into a cold hot runner before the mold has reached processing temperature
- PCM Output to IMM:
 - Connects to a signal in the IMM to stop it from cycling if the controller stops heating the mold
- Remote Standby Input from IMM:
 - Connects to a cyclical signal from the IMM to automatically lower the temperature of the hot runner system to prevent resin degradation in the mold if the IMM stops cycling


FTO Lead-Time

- FTO controller configurations have the shortest standard lead-times
- Contact the factory for orders greater than five units as this may affect the lead-time
- Please refer to the lead times published in the quote configurator for the most current availability
- An FTO checker integrated into the quote configurator will confirm if the configured product is FTO eligible

Dimensions


Neo5

Model Name	Height (H)	Width (W)	Depth (D)
C6-1	560mm 22″	305mm 12″	331mm 13″
C6-2	775mm 30.5″	305mm 12″	331mm 13″

Freestanding

Model Name	Height (H)	Width (W)	Depth (D)
Flat-top 6 Slot 1Bay	371mm [15"]	305mm [12"]	331mm [13"]
1 Stack (4 Total Bays)	1244mm [49"]	457mm [18"]	558mm [22"]
2 Stack (8 Total Bays)	1244mm [49"]	508mm [20"]	558mm [22"]
3 Stack (12 Total Bays)	1270mm [50"]	762mm [30"]	558mm [22"]
4 Stack (16 Total Bays)	1270mm [50"]	965mm [38"]	558mm [22"]

0

In this section:

Page

15-1	Interface Feature Comparison
15-10	Digital I/O Options
15-12	Delta5 and Matrix5 Hardware Overview
15-13	Advanced Features

Hardware Specifications	Neo5	Delta5	Matrix5
Max Number of Supported Zones	48	128	255
Screen Size	10.1"TFT Color LED	15.6"TFT Color LED	22"TFT Color LED
Screen Resolution	1280x800 WXGA 16:9 Aspect Ratio	1366x768 HD 16:9 Aspect Ratio	1920x1080 Full HD 16:9 Aspect Ratio
Touchscreen Technology	10 Touch PCAP (Projected Capacitive)	10 Touch PCAP (Projected Capacitive)	10 Touch PCAP (Projected Capacitive)
Max Zones Displayed on Screen at One Time	48	128	255

Control Features	Neo5	Delta5	Matrix5
Manual Boost and Standby Modes Lower or raise zone temperatures with touch of a button	~	✓	✓
Manual Standby/Boost Groups An integral part of the Panes view that allows groups of zones to be placed in standby or boost mode at overlapping intervals	~	~	~
UniStart UniStart is the default heating strategy for ART 2.0 and allows processing temperature to be reached as fast as possible while ensuring even thermal expansion in the hot runner, contributing to longer mold component life	V	✓	~
AltaStart AltaStart maximizes energy efficiency and reduced material degradation due to excessive residency time in the nozzles by staggering the heating times of preconfigured manifold and tip zone groups	V	✓	~
Active Reasoning Technology (ART 2.0) ART 2.0 is the second-generation control algorithm that provides the most precise, accurate, and repeatable control eliminating process variability while delivering the fastest heat-up times and greater energy efficiency. As an added benefit, ART 2.0 automatically groups zones as tips and manifolds, saving time when having to do this manually	~	~	~
Soft Start One button startup allows all zones to heat evenly reducing stress on mold components and prevents material degradation caused by excessive residency time. Automatically and continuously picks the slow zone to pace the heat up.	~	\checkmark	~
Active Reasoning Technology (ART Classic) ART is a proprietary control management technology that provides best in class temperature control	~	√	~
Staging (Startup and Shutdown) Allows zones to be assigned to 4 individual groups to manage the order in which they heat up or shutdown	~	√	~
Multi-cycle wet-heater bake-out (H card only) Provides optimal method for extending heater life by applying low voltage to evaporate moisture trapped in the heater's insulation material	~	✓	~
Zero Cross / Phase Angle Control Adjustable per zone to optimize power modulation to heaters based on their response time. Phase angle is critical for proper heater dehumidification.	~	✓	~
Auto / Manual Regulation Assign individual zones to run in closed loop (w/TC) control or open loop (set % power output) control modes	\checkmark	\checkmark	~

Control Features (continued)	Neo5	Delta5	Matrix5
Power Limit Provides a settable limit in the amount of power that can be delivered to a zone allowing the controller to run high KW molds on smaller supply services or protect heaters from damage	V	V	~
Auto Power Limiting System calculates full load of connected heater and automatically sets the Power Limiting level to limit the amount of current supplied to the heater thereby pre- venting the fuse on the card from clearing. This allows lower rated cards, such as the 4z 5A card, to be applied to manifold zones expanding the flexibility to run a controller with a mix of 2 and 4 zone cards on multiple hot runner configuration regardless of the zone order (Sprue \Rightarrow Manifolds \Rightarrow Tips \Rightarrow Tips \Rightarrow Manifolds \Rightarrow Sprue)	V	~	~
At-Temperature Delay Timer Allows a soak period before the IMM can start cycling, ensuring that the material in the mold is at the proper processing temperature. Ideal for valve gated systems because the material in the nozzle may not be at a temperature to allow the stem to break loose prevent- ing potential damage to the stems (Must have At- Temp Output option)	√	-	-

Zone Recover Features	Neo5	Delta5	Matrix5
Zone Slaving Automatically or manually assign a zone with a failed TC to a zone with similar control charac- teristics	~	\checkmark	~
Automatic Manual Control (AMC) Auto switch over to manual control on TC failure using average power output	\checkmark	\checkmark	✓
Primary Control Mode (PCM) Automatically shut down a zone or the system on any abort condition - system setting triggers digital output to IMM	~	✓	~

Security Features	Neo5	Delta5	Matrix5
Role Based Security Profiles Requires a user name and password to log into and use the system. User permissions can be assigned by a spe- cific role to better control who can change process crit- ical zone parameters	V	V	V
Lock Zone Parameters Provides means to lock critical zones to prevent users from changing processing parameters	✓	✓	✓

Calibration Features	Neo5	Delta5	Matrix5
Thermocouple Calibration Calibrate all thermocouple input to the controller on the shop floor directly through the operator interface using an off the shelf calibration device	~	✓	✓

Adjust and Configure Features	Neo5	Delta5	Matrix5
Quick Adjust Panel The Quick Adjust panel reduces zone on/off, regulation mode, and setpoint change time by as much as 50% by allowing changes to occur directly in the Neo, Text, and Graphical zone Views	~	~	~
Multi Zone Trimming Incrementally adjust parameters on multiple zones simultaneously	~	~	~
Individually Adjustable Alarm/Abort Limits Allows a different alarm or abort limit to be assigned per zone	\checkmark	~	~
Individually adjustable abort limits Allows a different temperature abort limit to be assigned per zone	~	~	~
Zone Naming Assign a custom name to zones for easier identification	~	~	~
Fahrenheit or Celsius Temperature Units Zone temperatures can be displayed in Fahrenheit or Celsius units	~	~	~
Hide Inactive Zones Allows unused zones to be hidden from view eliminating confusion for the operator	~	~	~
Digital I/O Configuration Provides means to manage digital interlocks with the IMM by defining the relay state and assigning channels by function	~	~	~
Mold Setup Storage Save zone parameters by mold name and recall them with the touch of a button	✓ 200+	✓ 200+	✓ 500+
Mold Setup Defaults Provides a means to set custom defaults so that all new mold setups are created using the same base values	~	~	~
Golden recipe overwrite protection The system retains all changes but only make them a permanent part of the loaded mold setup when an authorized user saves the changes	\checkmark	~	~
Automatic Setup Recall The system will automatically load the last mold setup when the controller is turned on	~	~	~
Hard shutdown protection Power to the system can be shut off from the main disconnect at anytime without any special software shutdown procedure or sequence. The system persists all changes to the database by clearing the buffer during a built in delay before power is cut to the computer and automatically recalls them on the next power up	~	~	~
J and K Type Thermocouple Support Thermocouple type is selectable in software with security protection. This allows a controller wired with J-Type thermocouples to run a mold configured for K-Type thermocouples with minimal temperature offset errors (It is recommended to always match thermocouple material type between mold, cables and controller)	V	~	~
User Profile Storage and Transfer Save user profile to the system to automatically recall the logged in users language and unit of measure preferences. The saved user profile can be exported to a USB and loaded on another system to save setup time	~	~	~
Customizable Basic and Advanced Modes Fully customizable Basic and Advanced modes that can be assigned to individual operators so they are only using features and functions that are necessary to perform their job.	~	-	-

Card Features	Neo5	Delta5	Matrix5
Integrated all-in-one design Minimizes discrete connections and components which increases reliability and reduces cost of ownership. Each card includes an integrated power supply, control circuit, thermocouple input circuit and power modulation circuit. In some configurations these circuits are designed as separate cards for up to 4 individual components to stock and maintain	~	~	✓
Integrated external heat sink Allows for a lower internal operating temperature which extends the working life of the cards	~	~	~
Safety relay on non-switched leg Allows both heater legs to be isolated when zone is turned off and system is in run mode preventing shock or shorts to ground when servicing the mold	~	~	~
4 zones per card @ 5A each Higher zone density reduces the overall foot print of the controller by as much as 63% saving valuable floor space	~	~	~
2 zones per card @ 16A each Maximizes flexibility to run different molds regardless of the tip/manifold wiring scheme	~	~	~
1 zone card @ 30A Ability to accommodate high current manifold zones commonly used in automotive applications	~	~	~
Run with grounded or ungrounded thermocouples Galvanically Isolated thermocouple inputs provide the flexibility to run any mold without risk of electrical noise interfering with the temperature measurement	~	~	~
Thermocouple Oversampling Sampling the thermocouple every millisecond (1000 times per second) ensures the integrity of the temperature signal which allows the algorithm to execute power changes based on the most accurate data	~	~	~
Fast Power Modulation Rate Once the optimal control algorithm is calculated, the card utilizes a modulation method that provides a uniform flow of power at a rate of 10 milliseconds or less, which greatly reduces the time when no energy is being delivered to the heater, resulting in minimal deviations in temperature or oscillations over time	~	~	~
Fast acting short circuit detection (H card only) Detects shorts in the mold and opens the circuit before the fuse clears providing cost and time savings associated with replacing blown fuses	~	~	✓

Operator Interface

Monitoring Features	Neo5	Delta5	Matrix5
Text View Textual view of all critical zone parameters in the system	~	~	~
Bar Graphs View Graphical view to quickly identify the controller status at a glance	-	~	~
Multi-group View Allows zones to be grouped to easily ID them by heater type, material color or resin type	~	~	~
Mold Picture View Allows an image to be assigned to a mold setup that includes zone tiles that identify the area of the picture that is associated with a heating zone in the controller	-	~	~
Neo2 View View that mimics the Neo2 zone data screens for greater user familiarity between Alta- nium products	~	~	~
Current and Voltage Measurement (H card only) System measures and displays the supply voltage and current being delivered to the heaters in real-time. These values can be compared against a historical baseline for troubleshooting and preventative maintenance	~	~	~
Heater Wattage and Resistance Display (H card only) System calculates and displays the heater wattage and resistance for each zone. These values can be compared against a historical baseline for troubleshooting and preventa- tive maintenance	~	~	~
Earth leakage measurement and display (H card only) System continuously measures differential voltage between legs to the heater for detect-i ng earth leakage faults and other types of shorts in the mold that single leg current mea- surement is not capable of finding. The operator has the option to display the measurement values on the screen or hide them if desired	~	V	~
Supply voltage display (H card only) Provides a graphical layout of the input power configuration connected to the controller. Each phase on the image dynamically displays the voltage measurement with a separate table that includes the measurements for all of the zones in the system grouped by their associated phase. This make it easy to identify a load imbalance or missing phase	~	~	~
View Regulation Allows zones to only read TC so they can monitor steel or water temperatures and assign alarm/abort values to them	~	~	~
Kilowatt/Hour Meter Records the KWH usage for individual mold setups and the system as a whole. Also provides means to calculate energy costs based on a KW per hour charge	-	~	~
Audible At-temperature notification Allows the operator to configure the system's horn to be used as an audible notification when the At-Temperature signal goes high by setting it to "chirp" at different frequencies	~	~	~
No Heater Alarm Provides instantaneous feedback that a heater has failed or is no longer connected to the circuit by continuously monitoring the current draw of all heat- ers to ensure it is above the user defined "no heater detection limit" for >10 Seconds.	~	~	~
LED Backlight Sleep Mode Allows the operator to configure the system to shut off the backlight of the monitor after a user defined period of no interaction to save energy and increase screen longevity	-	~	~

Auditing Features	Neo5	Delta5	Matrix5
Blown Fuse Detection Detects when a fuse clears while identifying the associated card where the fuse is located	~	~	✓
Open, Pinched or Reversed T/C Detection System is capable of detecting different types of TC errors on multiple zones at one time	~	~	~
Ground Fault Detection (H card only) Runs a ground fault check before power is applied to the heaters to prevent damage to the HR and hazardous electrical conditions for the operator	~	~	✓
Log Changes Automatically stores all zone parameter changes by mold setup name with a time/date stamp for easy ID and recall	~	~	~
Error Data Collection Automatically stores all errors by mold setup name with a time/date stamp for easy ID and recall	~	~	✓
Data Logging Provides means to record and store process data based on a set time interval	~	~	~
Real Time Zone Charting Allows a user to chart multiple zones in individual viewing panes in real time to compare performance or detect issues in real-time. Also allows multiple parameters from individ- ual zones to be selected for comparison such as: current, power output %, actual tem- perature and voltage	~	~	~
Current Deviation Provides means to identify an individual heater failure on zones that utilize multiple heaters tied to a single TC	~	~	~
Power Deviation (Resin Leak Detection) Monitors and detects deviations in the power being delivered to a heater for identifying resin leaks in the gate area and nozzle bore	~	~	~
Print-to-file Print screen shots or system reports directly to a USB disk	~	~	~
Continuous Printing Copy zone data reports directly to a USB disk based on a user specified frequency and duration. This can be vital for trouble shooting issues or keeping a historical record of the process	~	~	√

Connectivity and Communication Features	Neo5	Delta5	Matrix5
Online help Access and view the user guide directly from the operator interface. The user guide is also downloadable for printing a hard copy	-	~	~
Multi-language support Change screen languages with a touch of a button.	✓ -11	✓ -11	✓ -11
Store PDF files Import and view PDF documents in the system including user references or instructions	-	~	~
Store BMP, JPG and PNG images Import and view multiple image file types for user reference or assigning to mold pic- ture view or notes	~	~	~
Standard Digital I/O (Included w/purchase of display) Digital inputs and outputs provide interlocks between the controller and IMM preventing damage to the mold or process	-		to 4 any of In or Out
Remote standby input from injection mold machine This is digital input to the controller from a cyclical output signal on the injection mold- ing machine that when activated automatically lowers the temperature of the hot run- ner system to prevent resin degradation if the molding process stops for an extended period of time. It can also be configured with a delay timer the will inhibit the controller from going into standby mode until the timer expires	~	~	V
Networking (push/pull files to a network share) Push and pull files to and from the controller over a network	~	~	\checkmark

Operator Interface

Connectivity and Communication Features	Neo5	Delta5	Matrix5
Networking (Automatically write process data files to a network share) Automatically write process variables as individual CSV files to a network file share based on a user definable frequency	~	~	~
Wireless Network Connection Connect to a network wirelessly using a Netgear A6200 USB Wi-Fi adapter (dongle). This device is available for purchase from Husky or a third-party supplier	-	~	~

Diagnostic Features	Neo5	Delta5	Matrix5
Mold Diagnostics Routine Automatically test all heaters, sensors and wiring in the mold to quickly ID issues or vali- date mold before running production	~	~	~
Thermodynamic Mold Analysis System graphs temperature profile of all zones in a single view to quickly ID any slow or non-responsive zones	~	~	\checkmark
X-talk System records thermal isolation between zones to ID issues with TC placement	\checkmark	~	\checkmark
Detect and Rewire a Miswired Mold Enables controller to detect a miswired mold and rewire the TC through the software	~	~	~
Mold Test Comparisons Allows individual mold tests to be stored and compared against a baseline to easily identify changes in key electrical measurements for preventative maintenance purposes	~	-	-
Export Mold Test Data Save mold test data to a USB disk so it can be stored on a PC or used to create custom reports in Excel	~	~	~
Card Layout A virtual view of the controller to easily associate zones to a card location and ID a blown fuse or other components at the card level	-	~	~
Heater Watt Conversion Based on Supply Voltage Calculates the adjusted wattage of the heaters based on the supply voltage. Useful for determining if a heater is of sufficient size to reach a given setpoint when operating on a voltage lower than what it was designed for	-	~	~
 Circuit Test (H card only) System performs a series of test for all connected heater circuits on startup by applying low power to detect the following faults: Leakage: A low current short to ground that typically occurs when moisture is absorbed by a heater's insulation material Power to Thermocouple: Occurs when a cable plugged into the thermocouple connector on the mold is attached to the power output of the controller Short Circuit: Occurs when current travels along an unintended path as the result of a wiring error across the heater outputs, a pair of frayed conductors or a pinched wire Open Circuit: Occurs when a conductor is broken or comes loose and no current flows through the circuit it is associated with Wrong Heater: This is a case when the heater exceeds the capacity of the zone it is connected to in the controller. The system can be configured to automatically set the Power Limit level This feature is critical to minimizing the risk of damage to the controller or hot runner system 	*	¥	4
Circuit overload detection During circuit test the system will detect and alert the operator if a heater exceeds the capacity of the zone it is connected to in the controller. The system can be configured to automatically set the Power Limit level to run the heater if desired	~	~	~

Diagnostic Features	Neo5	Delta5	Matrix5
Power output of controller connected to thermocouple in mold detection During circuit test the system will detect when a cable plugged into the thermocouple connector on the mold is attached to the power output of the controller. The system will stop power output and alert the operator before any damage occurs to the thermocou- ple wire housing or junction point	V	V	~
Troubleshooting Guide (H card only) If a fault is detected during the circuit test a, Problem and Solutions dialog popup is trig- gered that provides access to an on-screen troubleshooting guide by selecting one of the potential solutions. The Troubleshooting guide displays a graphic with the trouble- shooting steps to assist the operator in fixing the reported problem	-	~	~

Optional Features	Neo5	Delta5	Matrix5
Integrated Digital I/O Option Integrated digital I/O channels means that the controller incorporates the supporting hardware inside the display base without the need for a separate I/O box	Limited 4IN, 40UT	16IN, 16OUT	16IN, 16OUT
Remote Load Option Allows a different binary address to be assigned up to 1023 individual mold setups providing the means to remotely load them based on corresponding digital inputs from the IMM or mold	-	~	~
Part Counting Option Provides means to count parts based on cavity utilization against a set limit that when reached triggers an output signal to change the part storage container	-	✓	~
Link Option Connect up to 4 individual mainframes to a single operator interface allowing multiple smaller controllers to perform the job of a larger controller with the added advantage of being able to break them apart once the job has been completed	-	V	✓
Dashboard Option Provides remote access to the controller for monitoring processing data using the Altanium Dashboard application on any computer that supports an internet browser (IE9, Chrome, Firefox or Safari)	-	~	✓
UltraSync-E Gen2 Option (Low Cav = or <64 drops) UltraSync E servo control is integrated into the operator interface eliminating the need for a separate display and providing the means to configure motion and recall profiles directly from the HR controller screen	-	~	~
UltraSync-E Gen2 Option (High Cav >64 drops) Same advantages as above, but optimized control for hot runner systems that have more than 64 cavities	-	-	~
UltraSync-E Gen2 Option (Dual UltraSync-E Control) Same advantages as above, but designed with control for two separate UltraSync-E hot runner systems integrated into the operator interface (ideal for stack/back-to-back mold designs)	-	-	~
Altanium Servo Control Integrated control for up to 6 servo axes (motors) for controlling motion in the mold such as core pulls, stripper plates and coining operations	-	-	✓
SPI Option SPI is a protocol for enabling the controller to communicate with a compatible IMM or with the Priamus Fill & Cool and ComoNeo systems	-	~	\checkmark

Interface Feature Comparison

Optional Features (Continued)	Neo5	Delta5	Matrix5
Modbus Interface (Read Only) The Modbus Read Only interface allows the Altanium to communicate over a standard Modbus network as a server. It supports commands using Modbus TCP over Ethernet. The read only version only allows process variables to be read from the controller for monitoring purposes only	✓	-	-
Modbus Interface (Read/Write) The Modbus Read/Write interface allows the Altanium to communicate over a standard Modbus network as a server. It supports commands using Modbus TCP over Ethernet. The read/write version allows process vari- ables to be read from the controller for monitoring purposes and written to the controller for as a means of remote control.	~	-	-
Shotscope NX Interface Provides a means to connect to and push processing date to a SSNX process and production monitoring system. This is also a solution to exchange Altanium process data with a third-party process monitoring system, over OPC-UA, using the SSNX OPC-UA module	-	✓	✓
Hylectric RS422 Machine Interface (Machine option #C6040) The RS422 machine interface is a Husky protocol that allows the Altanium controller to communicate to a HyCAP machine without the need for an I/ O Box. It also supports remotely loading mold setups on the controller and the automated color change feature	-	✓	✓
HyperSync/HyCAP4 Real-Time Ethernet Interface (Machine option #C6041) The communication between the machine and Altanium controller is done over Ethernet. This interface supports all of the RS422 functionality above and allows the Altanium screens to be displayed directly on the Polaris HMI for remote control of the hot runner controller	-	~	V
VNC Server Virtual Network Computing server is a screen sharing technology that allows remote access and control of another computer. It works by trans- mitting screen data and all touchscreen movements from the Altanium Mold Controller to a client computer such as an injection molding machine's operator interface	-	~	V
OPC UA Server The OPC UA server allows the Altanium to interface with data collection and process control systems for the collection of mold specific data such as cavity utilization and energy consumption so it can be made available for upstream analysis	-	~	~
Euromap 82.2 Interface The Euromap 82.2 interface allows the exchange of process variables, messages, and low-level control between Altanium and a Euromap 82.2 enabled IMM	-	~	~

Operator Interface

Digital I/O Options

Signal Type	Operator Interface	Function	Description			
	All	Remote Standby Input	Places all zones that have a Remote Standby setpoint into Standby mode (Lower setpoint) whenever this input signal is activated NOTE: This should be connected to a cyclical signal (Signal goes high to low during each injection cycle)			
	All	Remote Boost Input	Places all zones that have a Remote Boost setpoint into the Boost mode (Higher setpoint) whenever this input signal is activated NOTE: This should be connected to a cyclical signal (Signal goes high to low during each injection cycle)			
	All	Remote Start Input	Places the system in start mode whenever this signal is remotely activated. This state will remain until the STOP key is selected or Remote Stop is activated			
Digital	All	Remote Stop Input	Places the system in stop mode whenever this signal is remotely activated. This state will remain until the START key is selected or Remote Start is activated. NOTE: The system cannot be started when this input is active			
(From IMM)			Places all zones that have a Manual Boost setpoint set into Boost mode (Higher setpoint) whenever this input signal is activated. NOTE: This is the same as if an operator touched the boost key in the operator interface			
		Not Enabled	Forces a warning message "Mold Cooling Lines are not Enabled" on the screen until the signal has been deactivated. This signal is intended to come from a mold temperature controller. NOTE: Anytime the mold temperature controller is turned off (Input signal active), the warning message will be displayed			
	Delta5/ Matrix5	Cycle Input	Provides a start or end of cycle signal from the injection molding machine. This input can be configured as the trigger for logging process data on Altanium systems configured for hot runner temperature control. NOTE: This should be connected to a cyclical signal (Signal goes high to low during each injection cycle)			

Digital I/O Options (Continued)

Signal Type	Operator Interface	Function	Description
	All	At Temperature Output	Activated ONLY when all zones are above their Under-Temperature alarm limit. This state will remain until any zone drops below its Under Temperature alarm limit or the controller is put into Stop mode
	All	PCM Relay Output	Activated when an Abort condition occurs, and the PCM setting in the Quick Set screen is set to System. This state will remain until the alarm condition is CLEARED or RESET
	All	Alarm Relay Output	Activated when an Alarm or Abort condition occurs. This state will remain until the alarm condition is CLEARED or RESET
	All	Run Light Output	Activated whenever the START button is pressed. This state will remain until the system is placed in STOP mode
	Delta5/ Matrix5	Remote Standby Output	Activated when controller has received the Remote Standby input signal
	Delta5/ Matrix5	At Boost Temp Output	Activated ONLY when all zones with a Remote Boost setpoint are above their under-temperature alarm limit while in BOOST mode. This state will remain until any zone drops below its under temperature alarm limit or the controller is put into Stop mode NOTE: If any or all zones go above the over temperature alarm limit the state will remain
Digital	Delta5/ Matrix5	Max Temp Error Output	Activated when any zone exceeds the Over Maximum Temperature limit
Output (To IMM)	Delta5/ Matrix5	Mold Cooling Enabled Output	Activated when all temperatures are greater than the Mold Cooling Enabled Limit. NOTE: All temperatures must be equal to or lower than the Mold Cooling Enabled Limit before the signal is deactivated once the system is in STOP mode
	Delta5/ Matrix5	At Standby Temperature Output	Activated ONLY when all zones with a Remote Standby setpoint are above their under-temperature alarm limit while in Standby mode. This state will remain until any zone drops below its under temperature alarm limit or the controller is put into Stop mode NOTE: If any or all zones go above the over temperature alarm limit the state will remain
	Delta5/ Matrix5	Comm Error Output	Activated if the controller stops communicating with any of the Control Cards. This state will remain until communications are restored
	Delta5/ Matrix5	Process Outside Limits Output	Activated if any critical process parameter violates its threshold setting NOTE: The threshold setting is in the Process Limits screen
	Delta5/ Matrix5	Boost Active Output	Activated when the controller is in Boost mode. This state will remain high (Regardless if the Boost mode has been cancelled or expired) until all zones are under the upper alarm limit. This will ensure that all parts molded within this time frame will be declared scrap and diverted to a scrap container NOTE: The feature applies to Manual and Remote Boost modes

Delta5 and Matrix5 Hardware Overview

Feature	Delta5	Matrix5	Matrix5 Advantage
Screen Size	15.6″ 1366x768 HD	22″ 1920x1080 Full HD	55% More viewing area
Boot Time (mm:ss)	1:24	1:05	23% Less time consumed
Screen Switching Speed (Images rendered/ second)	324	500	35% Faster navigation

Advanced Features

Altanium is a highly integrated control platform for hot runner and mold control

 Altanium mold controllers offer the industry's most integrated platform for single-point access to the highly accurate and straightforward operation of temperature, servo, and valve gate control

Control Technology Compatibility Chart						
		Hot Runner Control	Altanium Servo Control	UltraSync-E Control	Valve Gate Sequencer Control	Individual Servo Valve Gate Control
Norse Norse	Hot Runner Control	-	✓ Matrix5	✓ Delta5/Matrix5	✓ Delta5/Matrix5	✓ Matrix5
Matrics	UltraSync-E Control	✓ Delta5/ Matrix5	✓ Matrix5	-	-	✓ Matrix5
Matrics Dottas	Valve Gate Sequencer Control	✓ Delta5/ Matrix5	-	-	-	-
Marius	Altanium Servo Control	✓ Matrix5	-	✓ Matrix5	-	✓ Matrix5
Maros	Individual Servo Valve Gate Control	✓ Matrix5	✓ Matrix5	✓ Matrix5	-	-

Advanced Features

Data Echange Interfaces

- Automatic File Transfer to Network File Share
 - Automatic file transfer is a standard feature on all Altanium operator interfaces. It provides the means to set up an automated way to transfer a .csv file containing temperature control process variables to a file share on a network based on a defined time interval. This feature is the most basic data collection method available for Altanium.
- OPC UA Server
 - The OPC UA Server interface is a paid option available with the Delta5 and Matrix5 operator interfaces. It provides a means to interface with a customer's process or production monitoring systems utilizing readily available third-party client applications that support the OPC UA data exchange standard. This interface is based on the Euromap 82.2 standard and allows the customer to read, write and collect data using an Industry 4.0 solution.
- Euromap 82.2 (EM82.2) Injection Molding Machine Interface
 - The EM82.2 interface is a paid option available with the Delta5 and Matrix5 operator interfaces. It provides a means to interface with any injection molding machine that supports the Euromap 82.2 interface for hot runner controllers. Based on the OPC UA data exchange standard, the customer can read, write and collect data using an Industry 4.0 solution.
- SPI Injection Molding Machine Interface
 - SPI is a paid option available with the Delta5 and Matrix5 operator interfaces. It provides a means to interface with any injection molding machine that supports the Society of Plastics Industry (SPI) interface for hot runner controllers. SPI is an older, dated interface used primarily for interfacing with the Priamus Fill & Cool and Kistler Como or ComoNeo systems.
- TeamViewer Interface
 - TeamViewer is a standard interface available on all Delta5 and Matrix5 operator interfaces, regardless of the configured control technology (HRC, US-E, ASC, VGS, ISVG). It provides a means for Husky service personnel to access an Altanium controller for remote troubleshooting purposes. This interface can be used by the customer, but only when directed to do so.
- Virtual Network Computing (VNC) Server
 - VNC is a paid option available with the Delta5 and Matrix5 operator interfaces. It provides a means to share and control the Altanium screens with a client, such as an injection molding machine's operator interface or another remote computer. This technology is intended for remote control only when there is a clear line of sight to the Altanium from the IMM operator interface or remote computer.

Advanced Features

Data Echange Interfaces

Modbus TCP Server

 The Modbus TCP Server is a paid option, available with the Neo5 operator interface, and provides a means to communicate with a host computer using the Modbus protocol over Ethernet. The customer is responsible for implementing the Modbus client application per the Altanium Neo5 Modbus Interface design document. This solution provides the ability to read, write and collect data from the Neo5 by using a Modbus client device.

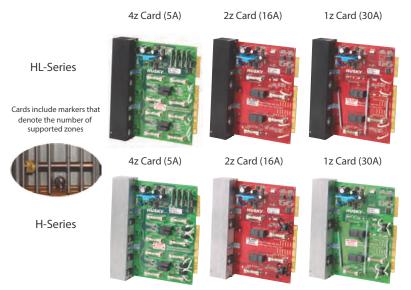
Wired Network Connection

- There is a wired network connection available on the Neo5, Delta5 and Matrix5 operator interfaces as standard. Interfacing to the following options requires this connection:

Automatic file transfer to network file share OPC UA Server Euromap 82.2 Injection Molding Machine Interface Shotscope NX Interface Team Viewer Remote Support Interface Virtual Network Computing (VNC) Server Modbus TCP Server

Wireless Network Connection

 The Delta5 and Matrix5 operator interfaces support connecting to a wireless network as standard. This connection requires the installation of a D-Link DWA-182 Wireless USB Adapter. The adapter is available for purchase through Husky or from a third-party supplier. The options listed under Wired Network Connection can also be accessed using this wireless connection.

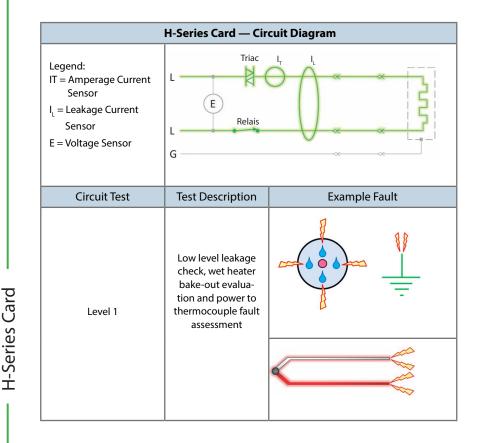

Data Exchange Interface Type	Data Collection	Read Data	Write Data	Remote Support	Neo5	Delta5	Matrix5
Automatic File Transfer to Network File Share	~	-	-	-	~	~	~
OPC UA Server	~	 ✓ 	 ✓ 	-	-	✓	✓
Shotscope NX Interface	~	~	-	-	-	~	✓
TeamViewer Interface	-	-	-	✓	-	~	✓
Virtual Network Computing (VNC) Server	-	-	~	-	-	~	~
Euromap 82.2 Injection Molding Machine Interface	~	~	~	-	-	~	~
SPI Injection Molding Machine Interface	~	~	~	-	-	~	~
Modbus TCP Server	~	~	~	-	~	-	-
Wired Network Connection	-	-	-	-	~	~	✓
Wireless Network Connection	-	-	-	-	-	~	✓

In this section:

Page

16-1	H-Series Card Configurations
16-4	H-Series Card Functionality
16-5	H-Series Card Feature Comparison

H-Series Card Configurations


Please note that all cards have now been switched over to red

- Available zone configurations:
 - 4 zones @ 5A each (Optimized for tip zones)
 - 2 zones @ 16A each (Optimized for manifold zones)
 - 1 zone @ 30A each (Optimized for high wattage manifold zones)
- Models:
 - HL-Series
 - Economical solution w/voltage but no current or ground fault measurement
 - H-Series
 - Full-featured with current, ground fault and voltage measurement

H-Series Card Configurations

- On startup, H-Series cards perform a heater circuit test on each zone simultaneously before • full power is applied to minimize risk of damage to the controller or hot runner system
- This test is critical for detecting the following heater circuit faults:
 - Leakage: A low current short to ground that typically occurs when moisture is absorbed by a heater's insulation material
 - Power to Thermocouple: Occurs when a cable plugged into the thermocouple connector on the mold is attached to the power output of the controller
 - Short Circuit: Occurs when current travels along an unintended path as the result of a wiring error across the heater outputs, a pair of frayed conductors or a pinched wire
 - Open Circuit: Occurs when a conductor is broken or comes loose and no current flows through the circuit it is associated with
 - Wrong Heater: This is a case when the heater exceeds the capacity of the zone it is connected to in the controller. The system can be configured to automatically set the Power Limit level

This test provides in under 17 seconds an automated comprehensive diagnostics of all zones in the mold each time the controller is started reducing the need for conducting more time consuming sequential thermocouple and heater checks and operator dependent actions.

H-Series Card Configurations

Circuit Test	Test Description	Example Fault
Level 2	Leakage check and short circuit evaluation of triac- side faults	Short Across Source before heater Source Dinched Source Dinched Source Source Dinched Source
Level 3	Leakage check and short circuit evaluation of relay-side faults	Short Relay Side Pinched Relay Side Load Pulled out and Shorted Relay Side Load Pulled out and Shorted Shorted
Level 4	Line-to-line check for over-sized heaters	3840W 4320W

H-Series Card

H-Series Card Functionality

H-Series 2z Card (16A per Zone)

Circuit Measurement on Backside

- 1 Independent mechanical relays for each zone
 - Allows both legs to be isolated when zone is turned off in run mode
- 2 Differential current measurement per zone
 - Integral to ground fault and short circuit detection
- 3 Voltage and current measurement circuits
 - Central to diagnosing heater circuit faults and energy consumption calculations
- 4 High performance processor and CANbus transceiver
 - More robust communications with HMI
- 5 High resolution on ADC and CJC sensor reposition
 - More accurate thermocouple measurement
- 6 Fully isolated T/C channels
 - Greater immunity to electrical noise
- 7 Fast acting short circuit detection built into processor *
 - Detect a short and open circuit before fuse clears

* Effectiveness determined by the configuration of the supply voltage and region where operating

** Effectiveness determined by the length of thermocouple wire in hot runner system

Benefit

H-Series Card

- Better troubleshooting and fault mitigation capabilities
 - Detect a greater range of fault conditions by measuring both current and earth leakage
 - Detect a short and stop power output before the fuse clears using the fast acting short circuit detection function*
 - Detect when power is applied to a thermocouple circuit in hot runner and stop power before any damage occurs to the thermocouple wire housing**

H-Series Card Feature Comparison

Functions /	Car	ds	D <i>G</i>
Features	HL	н	Benefit
Integrated design with external heat sink	\checkmark	\checkmark	Allows for a lower internal operating temperature which extends the working life of the cards
Active Reasoning Technology (ART)	\checkmark	~	Provides accurate and repeatable temperature control that minimizes deviations from setpoint allowing the opportunity to reduce cycle times and energy consumption
Integrated all-in-one design	\checkmark	\checkmark	Minimizes discrete connections and components which increases reliability and reduces maintenance costs
4 zones per card @ 5A each	\checkmark	\checkmark	Higher zone density reduces the overall foot print of the controller by as much as 25% saving valuable floor space
4 zones per card @ 5A each	\checkmark	\checkmark	Maximizes flexibility to run different molds regardless of the tip/ manifold wiring scheme
4 zones per card @ 5A each	\checkmark	\checkmark	Ideal for high current manifold zones commonly used in automotive and other large part applications
Run with grounded or ungrounded thermo- couples	~	\checkmark	Isolated thermocouple inputs provide the flexibility to run any mold without risk of electrical noise interfering with the temperature measurement
Safety relay on non- switched leg	\checkmark	~	Allows both heater legs to be isolated when zone is turned off and system is in run mode preventing electrical shock or shorts to ground when servicing the mold
Thermocouple slaving (auto and manual)	~	~	Allows automatic on-the-fly recovery of failed thermocouples based on following the power output of a similar zone, eliminating any downtime
Zero-Cross or Phase Angle power output control	~	\checkmark	Uniform flow of power reducing time that no energy is being supplied to the heater and ability to limit applied voltage
Card interchangeability	\checkmark	\checkmark	Reduced number of components to stock and maintain contributes to lower maintenance costs
Automated mold diagnostics	\checkmark	\checkmark	Quickly and accurately diagnose issues in the mold without the need for additional tools, limiting downtime and associated costs
On screen board diagnostics (Delta5 and Matrix5 only)	~	\checkmark	Identifies the exact location of failed card or component, such as a fuse or switching device, reducing downtime and maintenance costs
Power deviation alarm for plastic leak detection	~	\checkmark	Real-time power deviation monitoring provides early warning detection of resin leaks in the gate area of the mold
Softstart for even thermal expansion on heat up	~	\checkmark	Contributes to longer mold component life, reduced material degradation due to excessive residency time and maximizes energy efficiency
Multi-cycle wet- heater bake-out	\checkmark	\checkmark	Provides optimal method for extending heater life by applying low voltage to evaporate moisture trapped in the heater's insulation material

H-Series Card Feature Comparison

Functions /	Ca	rds	
Features	HL	н	Benefit
Real-time voltage measurement	\checkmark	~	Helps in diagnosing heating issues in the mold and problems asso- ciated with the mains supply to the controller
Real-time amperage measurement	-	\checkmark	Helps in diagnosing problems in the mold, calculating power con- sumption and preemptive heater failure
Real-time wattage and ohm calculations	-	\checkmark	Helps in diagnosing problems in the mold, determining heater size for replacement and calculating power consumption
Real-time earth leak- age measurement	-	\checkmark	Helps to detect earth leakage faults and other types of shorts in the mold that single leg current measurement is not capable of finding
Fast acting short cir- cuit detection	-	~	Detects shorts in the mold and opens the circuit before the fuse clears providing cost and time savings associated with replacing blown fuses
Power to thermocou- ple detection	-	\checkmark	Detects when power is mistakenly applied to a thermocouple cir- cuit and shuts power off before the thermocouple wire or hot run- ner is damaged
Current deviation alarm for failed heater detection	-	\checkmark	Real-time current deviation monitoring provides early warning detection of a failed heater on a single zone running multiple heat- ers using a single thermocouple

HL-Series 2z @ 16A Card

H-Series 2z @ 16A Card

In this section:

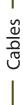
Page

17-1	Standard Cable Packages
17-15	. Non-Standard Cable Package Definitions

Husky Standard Power and Thermocouple Cables								
Power: 24M – 2L/24F – 1L T/C: 24F – 2L/24M – 1L								
	Reference Image	Controller Wiring						
	Controller Connectors			nale		ale		
T/C		Zone	Power	Power	T/C (+) White	T/C (-) Red		
1/0		1	1	13	1	13		
	Statement of the	2	2	14	2	14		
PWR		3	3	15	3	15		
		4	4	16	4	16		
	Cable Connectors	5	5	17	5	17		
		6	6	18	6	18		
		7	7	19	7	19		
		8	8	20	8	20		
		9	9	21	9	21		
	T/C - Mold PWR - Mold	10	10	22	10	22		
PWR - Co		11	11	23	11	23		
		12	12	24	12	24		
	Husky Standard Power	and The	rmocour	ole Cable	ς			
	Power: 24M – 2L/24F –							
	Reference Image			ntroller W	iring			
	Controller Connectors		Fem	nale	Ma	ale		
T/C	Constanting of the local division of the loc	Zone	Power	Power	T/C (+) White	T/C (-) Red		
1/C		1	1	13	1	13		
	Section and the section of the secti	2	2	14	2	14		
PWR	Similar Contraction	3	3	15	3	15		
		4	4	16	4	16		
	Cable Connectors	5	5	17	5	17		
		6	6	18	6	18		
		7	7	19	7	19		
		8	8	20	8	20		
		9	9	21	9	21		
		10	10	22	10	22		

17-1 Hot Runner Product Handbook v 19.3

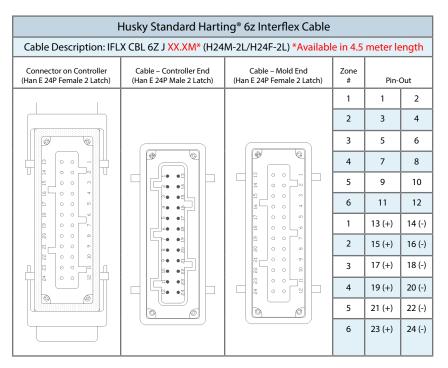
PWR - Mold PWR - Controller

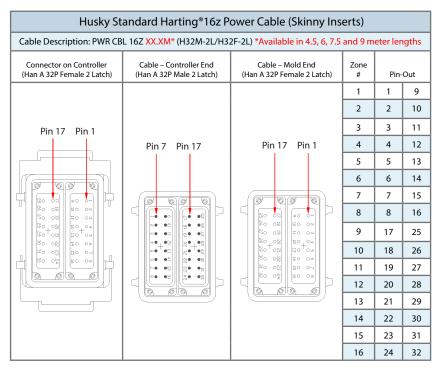

TC - Mold T/C - Controller

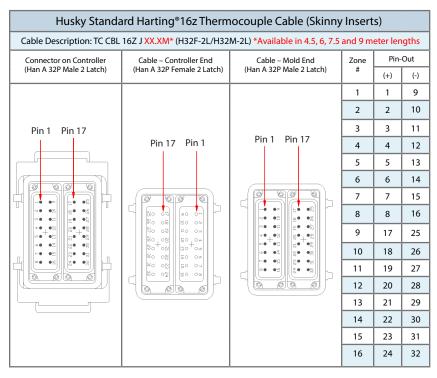
Cables -

L	DME [®] Standard Power and Thermocouple Cables					
	Power: 25M – 1L/25F –	1L T/C:	25F – 1L/2	24F – 1L		
Refere	ence Image		Co	ntroller W	iring	
Controlle	er Connectors		Ferr	nale	Ma	ale
T/C		Zone	Power	Power	T/C (+)White	T/C (-) Red
		1	1A	2A	1	13
PWR		2	3A	4A	2	14
PWK	PWR	3	5A	6A	3	15
		4	7A	8A	4	16
Cable	Connectors	5	2B	3B	5	17
		6	4B	5B	6	18
		7	6B	7B	7	19
		8	1C	2C	8	20
		9	3C	4C	9	21
			5C	6C	10	22
T/C - Mold	PWR - Mold	11	7C	8C	11	23
T/C - Controller	PWR - Controller	12	9A	9C	12	24

Harting® Standard Power	Harting [®] Standard Power and Thermocouple Cables				
Power: 16M – 2L/16F – 1L 1	7/C: 16F	– 2L/16M -	– 1L (HAN·	-E)	
Reference Image		Co	ntroller W	iring	
Controller Connectors (HAN-E)	7	Fen	nale	Ma	ale
	Zone	Power	Power	T/C (+)White	T/C (-) Red
T/C	1	1	9	1	9
PWR	2	2	10	2	10
	3	3	11	3	11
Cable Controllers (HAN-E)	4	4	12	4	12
	5	5	13	5	13
	6	6	14	6	14
T/C - Controller	7	7	15	7	15
PWR - Mold PWR - Controller T/C - Mold	8	8	16	8	16


Harting® Standard Powe	r and Th	ermocol	unle Cabl	<u>م</u>	
	Power: 16M – 2L/16F – 2L T/C: 16F – 2L/16M – 2L (HAN-E)				
Reference Image		Co	ntroller W	iring	
Controller Connectors (HAN-E)	7	Fen	nale	Ma	ale
т/с	Zone	Power	Power	T/C (+)White	T/C (-) Red
	1	1	9	1	9
PWR	2	2	10	2	10
	3	3	11	3	11
Cable Connectors (HAN-E)	4	4	12	4	12
	5	5	13	5	13
	6	6	14	6	14
T/C - Controller	7	7	15	7	15
PWR - Mold PWR - Controller T/C - Mold	8	8	16	8	16


	Husky Standard Harting®32z Power Cable				
Cable Description: PWR Cl	BL 32Z <mark>XX.XM*</mark> (H64M-2L/H	64F-2L) * <mark>Available</mark> in 4.5, 6,	7.5 and 9	9 meter le	ngths
Connector on Controller (Han D 64P Female 2 Latch)	Cable – Controller End (Han D 64P Male 2 Latch)	Cable – Mold End (Han D 64P Female 2 Latch)	Zone #	Pin-(Out
			1	1A	1B
			2	2A	2B
			3	3A	3B
			4	4A	4B
			5	5A	5B
			6	6	6B
			7	7A	7B
			8	8A	8B
			9	9A	9B
			10	10A	10B
			11	11A	11B
	D C B A	D C B A	12	12A	12B
			13	13A	13B
			14	14A	14B
			15	15A	15B
			16	16A	16B
		1 0000 u	17	1C	1D
	13 0000 13 14 0000 14 15 0000 15	I O O O O I I	18	2C	2D
			19	3C	3D
			20	4C	4D
			21	5C	5D
			22	6C	6D
			23	7C	7D
			24	8C	8D
			25	9C	9D
			26	10C	10D
			27	11C	11D
			28	12C	12D
			29	13C	13D
			30	14C	14D
			31	15C	15D
			32	16C	16D


Hot Runner Product Handbook v 19.3 17-4

Cable Description: TC	CBL 32Z J XX.XM* (H64F	-2L/H64M-2L) *available	e in 4.5 r	neter le	ngth
Connector on Controller	Cable – Controller End	Cable – Mold End	Zone	Pin-	Out
(Han D 64P Male 2 Latch)	(Han D 64P Female 2 Latch)	(Han D 64P Male 2 Latch)	#	(+)	(-)
			1	1A	18
			2	2A	28
			3	3A	38
			4	4A	48
			5	5A	5E
			6	6	68
			7	7A	76
			8	8A	88
			9	9A	9E
			10	10A	10
			11	11A	11
			12	12A	12
			13	13A	13
			14	14A	14
			15	15A	15
l :			16	16A	16
			17	1C	10
			18	2C	2[
			19	3C	30
			20	4C	4[
			21	5C	50
			22	6C	60
			23	7C	70
			24	8C	80
			25	9C	90
			26	10C	10
			27	11C	11
			28	12C	12
			29	13C	13
			30	14C	14
			31	15C	15
			32	16C	16

Husky Standard	Harting [®] 6z Interflex (Cable (Alternating PW	R/TC S	equenc	e)
Cable Description: IFL	Cable Description: IFLX CBL 6Z J XX.XM* (H24M-2L/H24F-1L) *Available in 4.5 meter length				ength
Connector on Controller (Han E 24P Female 2 Latch)	Cable – Controller End (Han E 24P Male 2 Latch)	Cable – Mold End (Han E 24P Female 2 Latch)	Zone #	Pin-0	Out
			1	1	2
			1	3 (+)	4 (+)
			2	5	6
			2	7 (+)	8 (+)
			3	9	10
4 0 0 12 12	4● 9⊒ 9	₩ 0 0 4 ₩ 0 0 m	3	11 (+)	12 (-)
e 2 0 0 11	20 00		4	13	14
20 19 0 0 0 8 7	20 ● 00		4	15 (+)	16 (-)
			5	17	18
		24 53 15 10 0 0 54 15 11 10 0 0 0	5	19 (+)	20 (-)
			6	21	22
			6	23 (+)	24 (-)

Cable Description: PWR CBL 24Z XX.XM* (H48M-1L/H48F-1L) *Available in 4.5, 6, 7.5 and 9 meter length Zone Connector on Controller (Han E 48P Female 1 Latch) Cable - Controller End (Han E 48P Female 1 Latch) Cable - Mold End (Han E 48P Female 1 Latch) 1 1 13 2 2 14 3 3 15 4 4 16 5 5 17 6 6 18 7 7 19 8 8 20 9 21 10 10 12 10 10 12 24 11 11 13 25 37 11 11 12 24 36 40 17 29 41 13 25 37 14 26 38 15 27 39 16 28 40 17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47 24 36 48 24<	Husky	v Standard Harting® 2	24z Power Cable			
(Han E 48P Female 1 Latch) (Han E 48P Female 1 Latch) <th< td=""><td>Cable Description: PWR CBL 24Z</td><td>XX.XM* (H48M-1L/H48F-1</td><td>L) *Available in 4.5, 6, 7.5 a</td><td>nd 9 me</td><td>ter len</td><td>gths</td></th<>	Cable Description: PWR CBL 24Z	XX.XM* (H48M-1L/H48F-1	L) *Available in 4.5, 6, 7.5 a	nd 9 me	ter len	gths
Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin1 Pin25 Pin25 Pin1 Pin25 Pin1 Pin25 Pin25 Pin1 Pin25 Pin1 Pin25 Pin25 Pin1 Pin25 Pin25 Pin25 Pin25 Pin1 Pin25 Pin25 Pin25 Pin25 Pin25 Pin25					Pin-	Out
Pin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 B 8 20 9 9 21 10 10 22 11 11 23 32 37 14 26 38 15 27 39 16 28 40 17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				1	1	13
Pin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Pin 25 Pin 1 Pin 25 Pin 1 Fin 1 Fin 25 Pin 1 Pin 25 Pin 1 Fin 1 Fin 25 Pin 1 Pin 25 Pin 1 Fin 2 Fin 1 Fin 25 Pin 1 Pin 25 Fin 2 Fin 2 Pin 25 Pin 1 Pin 25 Fin 2 Fin 2 Pin 25 Pin 1 Pin 25 Fin 2 Fin 2 Pin 25 Pin 1 Pin 25 Fin 2 Fin 2 Pin 25 Pin 1 Pin 25 Fin 2 Fin 2 Pin 25 Pin 25 Pin 25 Fin 2 Fin 2 Pin 25 Pin 25 Pin 25 Fin 2 Fin 2 Pin 25 Pin 25 Pin 25				2	2	14
Pin 1 Pin 25 Pin 1 Pin 25 Pin 1 Pin 25 Pin 25 Pin 1 Pin 25 Pin 25 Pin 25 Pin 25 </td <td></td> <td></td> <td></td> <td>3</td> <td>3</td> <td>15</td>				3	3	15
Pin 1 Pin 25 Pin 25 Pin 1 Pin 25 Pin 1 Pin 25 Pin 1 Pin 25 Pin 25 Pin 1 Pin 25 Pin 25 <				4	4	16
Pin 1 Pin 25 Pin 1 Pin 25 Pin 25 Pin 1 Pin 25 Pin 25 Pin 25 Pin 25 Pin 25 Pin 25 Pin 25 Pin 25				5	5	17
Pin 1 Pin 25 Pin 1 Pin 25 Pin 1 9 9 21 Image: Ima				6	6	18
Pin1 Pin25 Pin25 Pin25				7	7	19
Image: Second	Pin 1 Pin 25	Pin 1 Pin 25	Pin 25 Pin 1	8	8	20
Image: state stat				9	9	21
Image: state stat				10	10	22
12 12 12 14 13 25 37 14 26 38 15 27 39 16 28 40 17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47		6 90 9	0 00 0	11	11	23
14 26 38 15 27 39 16 28 40 17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				12	12	24
15 27 39 16 28 40 17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				13	25	37
16 28 40 17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				14	26	38
17 29 41 18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				15	27	39
18 30 42 19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				16	28	40
19 31 43 20 32 44 21 33 45 22 34 46 23 35 47				17	29	41
20 32 44 21 33 45 22 34 46 23 35 47				18	30	42
21 33 45 22 34 46 23 35 47				19	31	43
22 34 46 23 35 47				20	32	44
23 35 47				21	33	45
				22	34	46
24 36 48				23	35	47
				24	36	48

Husky Sta Cable Description: TC CBL 24Z J	ndard Harting®24z T XX XM* (H48F-11 /H48M-11			eter len	aths
Connector on Controller (Han E 48P Male 1 Latch)	Cable – Controller End (Han E 48P Female 1 Latch)	Cable – Mold End (Han E 48P Male 1 Latch)	Zone #	Pin-	
			1	1	13
			2	2	14
			3	3	15
			4	4	16
			5	5	17
			6	6	18
			7	7	19
			8	8	20
Pin 1 Pin 25	Pin 25 Pin 1	Pin 1 Pin 25	9	9	21
			10	10	22
			11	11	23
	6 66 6		12	12	24
			13	25	37
		v • •2	14	26	38
		** ** ** ** ** **	15	27	39
			16	28	40
			17	29	41
			18	30	42
			19	31	43
			20	32	44
			21	33	45
			22	34	46
			23	35	47
			24	36	48

Cables –

Husky	Standard Harting®	12z Interflex Cable			
Cable Description: IFLEX CBL	_ 12Z J <mark>XX.XM</mark> * (H48MF-1	L/H48MF-1L) *Available in	4.5 met	er lengt	h
Connector on Controller (Han E 48P M/F 1 Latch)	Cable – Controller End (Han E 48P M/F 1 Latch)	Cable – Mold End (Han E 48P M/F 1 Latch)	Zone #	Pin	-Out
			1	1	13
			2	2	14
			3	3	15
			4	4	16
			5	5	17
			6	6	18
			7	7	19
Pin 1 Pin 1	Pin 1 Pin 1	Pin 1 Pin 1	8	8	20
			9	9	21
		0 00 0	10	10	22
			11	11	23
			12	12	24
			1	1 (+)	13 (-)
			2	2 (+)	14 (-)
			3	3 (+)	15 (-)
			4	4 (+)	16 (-)
		T/C PWR	5	5 (+)	17 (-)
T/C PWR (Male (Female	PWR T/C (Male (Female	(Male (Female Insert) Insert)	6	6 (+)	18 (-)
Insert) Insert)	Insert) Insert)	inserty inserty	7	7 (+)	19 (-)
			8	8 (+)	20 (-)
			9	9 (+)	21 (-)
			10	10 (+)	22 (-)
			11	11 (+)	23 (-)
			12	12 (+)	24 (-)

Husky Standard Ha	Husky Standard Harting®12z Interflex Cable (Mold-Masters Standard)				
Cable Description: IFLEX CBL	. 12Z J <mark>XX.XM*</mark> (H48MF-1	L/H48MF-1L) * <mark>Available in</mark>	4.5 met	er lengt	:h
Connector on Controller (Han E 48P M/F 1 Latch)	Cable – Controller End (Han E 48P M/F 1 Latch)	Cable – Mold End (Han E 48P M/F 1 Latch)	Zone #	Pin	-Out
			1	1	13
			2	2	14
			3	3	15
			4	4	16
			5	5	17
			6	6	18
			7	7	19
T/C PWR (Male (Female	PWR T/C (Male (Female	T/C PWR (Male (Female	8	8	20
Insert) Insert)	Insert) Insert)	Insert) Insert)	9	9	21
			10	10	22
6 66 6			11	11	23
			12	12	24
			1	1 (+)	13 (-)
			2	2(+)	14 (-)
			3	3 (+)	15 (-)
			4	4 (+)	16 (-)
			5	5 (+)	17 (-)
			6	6 (+)	18 (-)
Pin 1 Pin 1	Pin 1 Pin 1	Pin 1 Pin 1	7	7 (+)	19 (-)
			8	8 (+)	20 (-)
			9	9 (+)	21 (-)
			10	10 (+)	22 (-)
			11	11 (+)	23 (-)
			12	12 (+)	24 (-)

Husky Stand	Husky Standard Harting [®] 1z Interflex Cable (DME One Zone Standard)				
Cable Description: IFL	EX CBL 1Z J <mark>XX.XM</mark> * (H5	M-1L/H5F-1L) <mark>*Available</mark>	in 4.5 n	neter ler	ngth
Connector on Controller (Han A 5P Female 1 Latch)	Cable – Controller End (Han A 5P Male 1 Latch)	Cable – Mold End (Han A 5P Female 1 Latch)	Zone #	Pin-(Out
		1	1	4	
		TER	1	2 (+)	3 (+)

Non-Standard Cable Package Definitions

Other Industry Standard Cables (Harting)

Other cable configurations that include connectors of a common rectangular design, manufactured by Harting, are offered at the same price as the standard packages, but include longer lead-times. The following are images of the connectors that would be included with these types of configurations:

Other Industry Non-Standard Cables (Other than Harting®)

Other cable configurations that include connectors of a common rectangular design, not manufactured by Harting, are offered at a higher price than the standard packages and include longer lead-times. The following are names of manufacturers and images of the connectors that would be included with these types of configurations:

	Manufacturer and Connector Series that qualify for Other Industry Non-Standard (Other than Harting®)				
Manufacturer and Series (Not limited to manufacturers listed)	Example Connector Types (Epic [®] /Lapp® Shown)				
 Lapp (Epic® Series) T&B (Pos-E-Kon® Series) Wieland (revos BASIC® Series) Weidmuller (RockStar® Series) ILME (JEI® Series) Phoenix Contact (HEAVYCON® Series) Walther-Werke (PROCON® Series) All other manufacturers of this connector type 	HBE Series HA Series HEE Series HD Series HDD Series HBS Series Mixed Power Series				

In this section:

Page

18-1	Industry Trending Towards Electrification
18-3	Altanium Servo Control Differentiation
18-4	Altanium Servo Control System Architecture
18-5	Altanium Servo Control Screen Overview
18-6	Motors and Actuators
18-12	Altanium Servo Control Application Assessment
18-13	

Industry Trending Towards Electrification

- Electrification refers to the application of servo motors for controlling hot runner or mold functions
- Functions include but not limited to:
 - Valve Stems
 - Core Pulls
 - Coining Plates
 - Stripper Plates
 - Ejector Plates

 - Unscrewing cores

Ejector, Coining or Stripper Plates

> UltraSync E Synchronous VG Control

Why Electric over Hydraulic or Pneumatic?

Servo control solutions in general:

- Provide greater precision and control of movement, which reduces mechanical stress and increase mold life
- Are naturally cleaner and environmentally friendly with no risk of part contamination or need to dispose of hazardous hydraulic fluid
- Give instant feedback if something goes out of spec so operators can react before damage to the mold occurs, or part quality is compromised
- Are more energy-efficient because the conversion of electrical power to fluid power make hydraulic systems inefficient resulting in greater energy savings
- Require very little maintenance because there are no oil hoses or seals to leak and repair

Altanium servo control solution:

- Offers all the benefits of servo control solutions and more:
 - Altanium servo control includes full engineering support for sizing the servo motor to the application and defining the signal interface to the injection molding machine
 - Altanium servo control includes global startup support and training for faster mold qualifications and smoother integration into production
 - Altanium servo controllers are compatible with a variety of motor types, making it easy to repurpose for different molds

Hydraulic Control System

· Complex w/many components

and connections

Imprecise control

Hydraulic fluid full of

Servo Control System

- · Simple w/few components and connections
- contaminates Inefficient energy usage

Precise control Clean electrical power Highly energy efficient <u>a.</u>

Altanium Servo Control Differentiation

- · Comparison versus custom one-off solutions and i-mold (EMEA competitor)
 - Ease and Speed of Integration
 - Initial installation and commissioning can be done in half the time of a conventional system
 - · Actuators and drives commissioned at the factory
 - On-site start-up support and training
 - · Easily repeatable for like-applications
 - Ease of Use and Performance
 - Modifications to motion profile and system settings are significantly easier to execute
 - Scan rate from the time the command is received and executed is considerably faster (2ms per axis vs. ~17ms)
 - Ease of Doing Business (Customer Intimacy)
 - Full service application engineering support during order process
 - Turn-key motion control solution: controller + actuators
 - Scalable Integrated Solution
 - Standard all-in-one operator interface
 - 6 axes of servo control plus temperature, UltraSync-E and ISVG control
 - Motion profile settings transferable between systems
 - Customizable I/O interface w/IMM and mold
 - Controller Re-Purposing
 - Standard solution allows for re-purposing for use on other molds/ applications
 - Drive units cover a wide range of motor sizes
 - Global Support Network
 - Spare parts and technical service

Value Driver	Husky	Custom	I-Mold (EMEA)
Ease and Speed of Integration	S	9	(Jan
Ease of Use and Performance	S	9	5
Ease of Doing Business	Solution	() I	(Jan
Scalable Integrated Solution	E)	Ţ	() J
Controller Re-Purposing	E)	Ţ	Ţ
Global Support Network	S	9	Ţ
Best -	Average - 🖙	Poor - 📢	

Altanium Servo Control

Altanium Servo Control System Architecture

Matrix5

Altanium Servo Control is a Matrix5 based control technology that consolidates all system functions into a single operator interface

Servo Drives

Used to amplify the command signal from the control system and transmit electric current to the servo motor to produce motion

Linear Axes

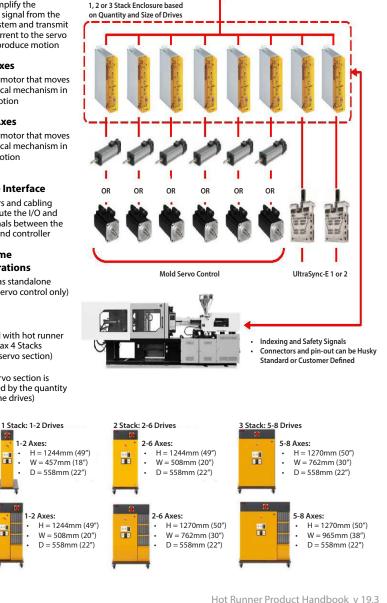
Any servo motor that moves a mechanical mechanism in a linear motion

Rotary Axes

Any servo motor that moves a mechanical mechanism in a rotary motion

Machine Interface

Connectors and cabling used to route the I/O and safety signals between the machine and controller


Mainframe Configurations

Available as standalone systems (Servo control only)

OR

Integrated with hot runner control (Max 4 Stacks including servo section)

(Size of servo section is determined by the quantity & size of the drives)

18-4

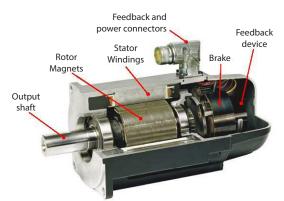
Altanium Servo Control Screen Overview

- Key features supported by the Altanium Servo Controller:
 - User configurable digital I/O for indexing and interlock signals from IMM
 - Two speed jogging mode
 - Ability to add a custom name to individual axis and I/O signals
 - Grouping for easy parameter changes and manual operations
 - Position and force warning and alarm settings
 - User definable permissions for initiating calibration, enabling override mode, indexing to a position and at a position
 - Multi-step motion profile for each indexed move
 - Time and force curves displayed for each axis

Servo Home Screen

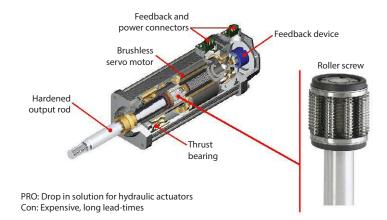
	en anti- tra transitioner anti- transitioner anti-	< > ft +
AXIS	🗱 All 🛛 = Servo Axis 1 = Servo Axis 2	
Manual Control	Image: Strap Strap Image: Strap Image: Strap<	
CUSTOM STATUS SIGNALS	Catter Synt Cutter Synt Cutter Synt Cutter Synt	
Servo Axis 1	Ended Calls Addi State Fore Position 1	Position 2
Servo Axis 2	Dubled Calls. Addi State Force Position 1 Disc Stated Calls and Disc State Force Position 1 Disc Stated Calls and Disc State Force Position 1 Disc State Position 1	Position 2
SERVO H		
Image: A state of the		2022.06-09 1541-22

- Overview of all Axes
- Access to other Servo screens
- Status, Force and Positions per Axis
- Display all/actual Axis positions
- Manual Operations
 - Home Position
 - Index Move
 - Stop
 - Calibrate
- Manual Jogging

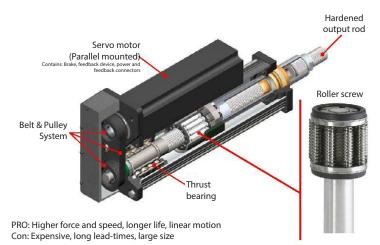

General Information:

- The number of axes (Axis = 1 Motor), type of motion, force, torque, speed and lifetime requirements will determine the quantity, type and size of the motor or actuator
- If customers want Husky to supply the servo motors or actuators we will quote solutions from our preferred suppliers
- Customers can supply their own servo motors or actuators, but they must be compatible with our control system
- Retrofit applications with existing motors will be evaluated for compatibility based on the supported feedback type
- All motors and actuators, including those supplied by the customer, must be tuned at the factory with the controller before shipping to the customer or mold maker

Common Servo Configurations:

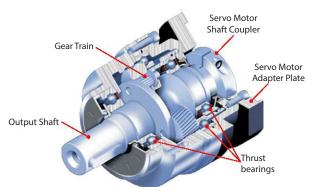

• Altanium Servo Controllers are compatible with all common servo configuration used in the injection molding industry:

Servo Motor



Pro: Relatively inexpensive, shorter lead-times Con: Requires external mechanism to translate rotary motion to linear motion

Linear Actuator with Integrated Servo Motor


Linear Actuator with Bolt-on Servo Motor


Gearboxes:

- Also known as a gearhead, a gearbox is a mechanical unit consisting of a series of integrated gears within a housing that is used in rotary motion power transmission applications to alter torque and speed between the servo motor and the load
- The need for a gearbox is determined during the application analysis and is typically used to multiply the torque of the motor based on a gear ratio

Gearbox Layout

Gearbox and Servo Motor Assembly

Gearbox Configurations

Inline Gearbox w/Output Shaft

Inline Gearbox w/Flange Output Shaft

Right-Angle Gearbox w/Output Shaft

Compatible Feedback Types:

- Closed loop feedback is what differentiates a servo system and is used to sense the speed, direction and position of the motor shaft
- Altanium Servo Controllers support three types of motor feedback devices:
 - Resolver
 - Analog feedback of absolute position within one revolution
 - More robust solution for demanding environments
 - Requires recalibration after power loss
 - Absolute Encoder (EnDat[®] 2.1 and Hiperface[®])
 - Digital feedback of absolute position
 - Most precise and accurate feedback device
 - If power is lost, its output will be correct whenever power is restored, so it is not necessary to recalibrate (Reference position)
 - Incremental Encoder (Sin/Cos and TTL)
 - Electromechanical feedback that does not indicate absolute position
 - Generates a series of pulses that are stored on an external buffer for calculating position
 - Inexpensive when compared to absolute
 encoders, but not as robust as resolvers
 - Requires recalibration after power loss

Husky Preferred Motors and Actuator Suppliers

- Baumueller
 - Servo Motors
 - Supplier of UltraSync-E motors
 - Speeds up to 6000rpm
 - Compact design with high power density
 - Excellent smooth running characteristics
 - High overload capability
 - Resolver feedback (other options available)
- Exlar
 - Linear Actuators
 - All-in-one compact unit w/ integrated motor
 - High capacity roller screw exceeds ball screw load ratings and life
 - EnDat[®] 2.1 absolute encoder (other options available)
 - Very popular in industry for linear applications

Output Shaft

rotational motion to linear within the actuator no external mechanical solution required

Other Compatible Servo Motor and Actuator Brands:

- Altanium Servo Controllers are compatible with several servo motor brands
 outside of our preferred suppliers
- · Compatibility of these motors is determined by the feedback type
- The table below includes a list of servo motor suppliers that are compatible with ASC (Consult the factory for suppliers not on this list)

Servo Mo	otor Supplier	Compatible*	Used w/ASC**	
Baumueller		✓ Preferred Supplier	✓ Preferred Supplier	
Exlar	EXLAR	✓ Preferred Supplier	✓ Preferred Supplier	
Tolomatic	STOIOMATIC EXCELLENCE IN MOTION.	✓	✓	
Stober	STOBER	✓	✓	
Diakont	DIAKONT	✓	~	
Infranor		✓	✓	
Bosch-Rexroth	Rexroth Bosch Group	✓	✓	
HDD		✓	\checkmark	
Kollmorgen	KOLLMORGEN	\checkmark	\checkmark	
Lenze	Lenze	✓	✓	
Baldor	BALDOR	✓		
B&R		✓		
Control Techniques	CONTROL	✓		
Sigmatek	SIGMATEK	✓		
Heidrive	Heidrive Motion & Systems	✓		

*Compatible = It has been confirmed that this supplier has motors that are available with feedback types compatible with ASC

**Used w/ASC = We have used motors from this supplier with ASC on applications running in the field

Note: Most manufacturers offer a range of supported feedback types, including the ability to retrofit an existing motor or actuator so it is compatible with ASC

Altanium Servo Control Application Assessment

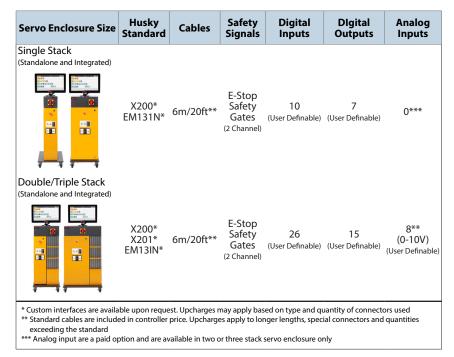
Application Scenarios and Minimal Required Information to Quote

- New mold design with servo motors and Altanium Servo Control
 - Information Required:
 - Refer to Minimal Required Information for Budgetary Quote table below
 - Solid model of the mold design (If available)
- Existing mold with hydraulic cylinders to be retrofitted with servo actuators and Altanium Servo Control
 - Information Required:
 - Refer to Minimal Required Information for Budgetary Quote table below
 - Manufacturer and full model description (number) of hydraulic cylinder
 - Solid model of the mold design (If available)
- New mold design with customer supplied servo motors and Altanium Servo Control
 - Information Required:
 - Refer to Minimal Required Information for Budgetary Quote table below
 - Manufacturer and full model description (number) of servo motors or actuators
 - Solid model of the mold design (If available)
- Existing mold with servo motors and controller, but only replacing the controller with Altanium Servo Control
 - Information Required:
 - Refer to Minimal Required Information for Budgetary Quote table below
 - Manufacturer and full model description (number) of servo motors or actuators
 - Solid model of the mold design (If available)

Minimal Required Information for Budgetary Quote				
Number of Axes	1-6			
Running Voltage	200-240v 380-41		415v	460-500v
Motion Type	Rotary		Linear	
Axis Function	Pull, Eject, Rotate, Unscrew, Stip, etc.			
Axis Mounting Direction	Vertical		Horizontal	
Weight (Mass) that Servo is Moving	lb		Kg	
Peak Force per Axis	lbf	N	lb-ft	Nm
Working Stroke (Approximately)	inch		mm	
Estimated Cycle Time	Sec			
Time for Servo Movement	Sec			

Signal Interface

General Information


 The signal interface is a set of connectors that contain the safety, indexing, and permission signals that connect the Altanium Servo Controller to the injection molding machine and mold

• This interface is a critical part of the controller design and is defined during the application review process

General Information

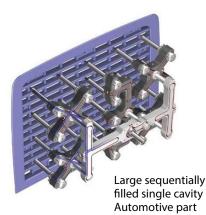
• The quantity of supported signals is based on the size of the Altanium Servo Control enclosure

· Valve Gate Sequencer

In this section:

Page

1

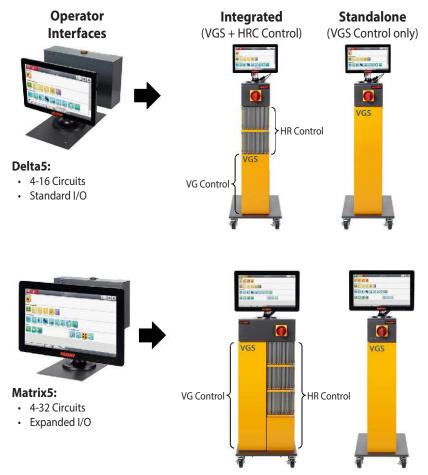

Altanium Valve Gate Sequencer (VGS)	9-1
e Features	
Available Configurations	
Hardware Layout	
Available Signals	
Available Cables	
Available Options	

Altanium VGS is:

- A complete Pneumatic and Hydraulic sequential control solution for up to 32 individual valve gates
- Highly configurable and operates based on position, time or any combination of other user definable analog and digital inputs
- Ideal for multi-gated parts used in the automotive and consumer electronics market

Valve Gate Sequencing allows for:

- Controlling when pneumatic or hydraulic valve gates open and close during each injection cycle
- Precision control over weld line positioning during part filling
- Ensuring the aesthetics and structural integrity of colored and glass filled parts
- Reductions in clamp tonnage requirements or elimination of weld lines by using a progressive fill technique called cascade molding
- Mechanical balancing of family molds

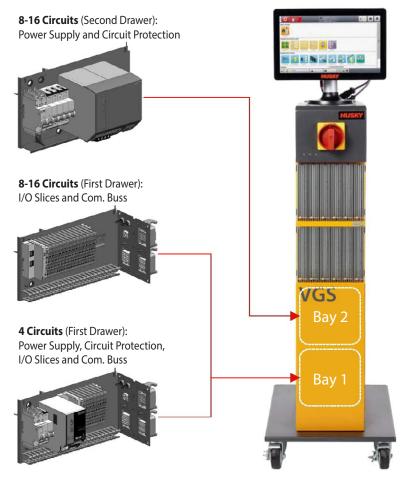

Valve Gate Sequencer

Altanium Valve Gate Sequencer (VGS)

Features

Feature	Altanium VGS	Advantage
Available with integrated hot runner control	~	Save cost and time by controlling two critical aspects of the process (VG and Temp) using a common operator interface
VGS overview (Home) screen	~	Saves time by providing an overview of the entire sequence, from a single screen, to ensure everything is working correctly or for trouble shooting problems in the process
Highly configurable signal interface to support multiple methods of triggering a sequence (Time, Digital or Analog)	V	Provides the flexibility to connect the controller to any number of available outputs signals, eliminating the need to pay for expensive upgrades on the machine
Compatible with analog signal from linear position transducer that can be easily configured to trigger the VG sequence based off IMM screw position	V	As a volumetric measurement of the available plastic in the mold, triggering the sequence off screw position is the most accurate and repeatable way to control valve gates, resulting in higher quality parts and less scrap
Manually actuate valve gates from the controller	~	Manually controlling valve gates is a simple and effective way to confirm how the solenoids are configured and that the system is connected properly
At-Temperature function with soak timer	~	Protects gates and valve stems from damage by preventing any actuation until the mold has reach processing temperature and has soak the appropriate amount of time to allow stems to move freely
Packing function	~	Allows individual valve gates to open and close up to 3 times in a single cycle which is critical to some processes for optimized quality by allowing targeted areas of the part to be packed further during injection
Dedicated safety gate input 🗸		Forces all stems to the closed position, when safety gates are opened, to protect personnel from resin burns

Available Configurations


Mainframe

Altanium Valve Gate Sequencer (VGS)

Hardware Layout (Low Circuit Configurations):

- Low circuit VGS control configurations are sold in 4 circuit increments starting at 4 circuits up to a maximum of 16 circuits:
 - 4 Circuits = 1 Bay
 - 8-16 Circuits = 2 Bays
- Available with Delta5 or Matrix5 operator interfaces

VGS Drawer Assemblies

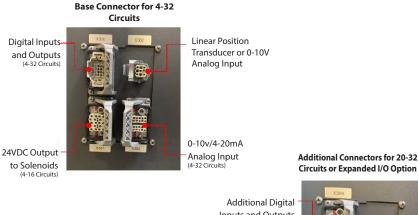
Note: There is an upcharge for configurations that require an additional mainframe stack to be added to accommodate the VGS components when sold with integrated hot runner control

Hardware Layout (High Circuit Configurations):

- High circuit VGS control configurations are sold in 4 circuit increments from 20 circuits up to a maximum of 32 circuits:
 - 20-24 Circuits = 3 Bays -
 - 28-32 Circuits = 4 Bays -
- Available with Matrix5 operator interface only ٠

VGS Drawer Assemblies

Mainframe


Valve Gate Sequencer

Altanium Valve Gate Sequencer (VGS)

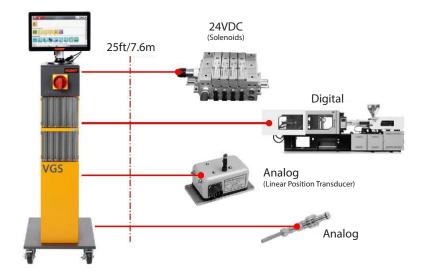
Available Signals:

Signal Type	Qty	Purpose	Comments
Digital Inputs	8 or 36	User configurable for triggers that interface with the IMM or auxiliary equipment	 Two digital inputs are used for the following signals: IMM Safety Gate Status VGS Enable These are safety inputs and cannot be changed 8 digital Inputs are standard on all configurations 28 additional digital inputs are standard on 20-32 circuit configuration on 4-16 circuit configurations
Digital Outputs	4	User configurable for signals to the IMM	
24VDC Outputs	4-32	Control for solenoids on air valves or hydraulic valves	2 amps per circuit
0-10V Analog Inputs	4	User configurable for position feedback or other analog sensors in the mold or IMM	One analog 0-10 V input dedicated to an optional linear position transducer
4-20mA Analog Inputs	2	User configurable for analog sensors in the mold or IMM	

Associated Connectors on Rear of Controller:

Additional 24VDC Output to Solenoids (20-32 Circuits)

Additional Connectors for 20-32


Inputs and Outputs (20-32 Circuits or

Expanded I/O)

19-6 Hot Runner Product Handbook v 19.3

Available Cables:

Cable Type	Length Ft/M	Purpose	Comments
Digital I/O w/ Flying Leads	25/7.6	Connecting digital inputs & outputs to IMM	Standard – Included w/ all controller configurations
Solenoid Output 2-16 CIR w/Flying Leads	25/7.6	Connecting 24VDC signals to other air valves	Standard – Included w/ controller when configured for 4-16 circuits
Solenoid Output 17-32 CIR w/ Flying Leads	25/7.6	Connecting 24VDC signals to other air valves	Standard – Included w/ controller when configured for 20-32 circuits
Solenoid Output 2-8 CIR w/ Connector	25/7.6	Connecting 24VDC signals to Husky air kits	Optional – Included w/1-16 circuit Husky circuit air kit
Solenoid Output 17-32 CIR w/ Connector	25/7.6	Connecting 24VDC signals to Husky air kits	Optional – Included w/17-32 circuit Husky circuit air kit
Position Transducer w/ Connector	25/7.6	Connecting to Husky linear position transducer	Optional – Included w/Husky linear position transducer
Position Transducer Flying Leads	25/7.6	Connecting to other linear posi- tion transducers or a 0- 10V analog device	Optional
Analog Inputs Flying Leads	25/7.6	Connecting to 0-10V or 4- 20mA analog devices	Optional

Valve Gate Sequencer -

Available Options

Option	Description	Comments
Linear Position Transducer (LPT) Kits	102mm/10"Linear Pull String Transducer Note: Longer lengths available upon request (Up to 2,032mm/80")	Includes cable w/ compatible linear position transducer connector
Low Circuit Air Kits		
	1-16 Numatics Solenoid Air Valves, Regulator, Shutoff Valve, and associated hoses and fittings	Includes cable w/ compatible valve stack control connector
High Circuit Air Kits		
	17-32 Numatics Solenoid Air Valves, Regulator, Shutoff Valve, and associated hoses and fittings	Includes cables w/ compatible valve stack control connectors
Hydraulic Power Units (HPU)		
	Standalone 8 or 16 Circuit Hydraulic Power Unit for hydraulic actuated valve gate applications	Includes cable w/ compatible valve stack control connector

Husky actively protects its technical and design innovations through a global intellectual property strategy. Husky currently has more than 900 patents and patent applications worldwide. The equip shown in this publication may be currently strategy. Husky currently has more than 900 patents and patent applications worldwide. The equipment shown in this publication may be covered by one or more of these patents.

°/© 2020 Husky Technologies™ 2022