This product manual is intended to provide information for safe operation and/or maintenance. Husky reserves the right to make changes to products in an effort to continually improve the product features and/or performance. These changes may result in different and/or additional safety measures that are communicated to customers through bulletins as changes occur.

This document contains information which is the exclusive property of Husky Injection Molding Systems Limited. Except for any rights expressly granted by contract, no further publication or commercial use may be made of this document, in whole or in part, without the prior written permission of Husky Injection Molding Systems Limited.

Notwithstanding the foregoing, Husky Injection Molding Systems Limited grants permission to its customers to reproduce this document for limited internal use only.

Husky® product or service names or logos referenced in these materials are trademarks of Husky Injection Molding Systems Ltd. and may be used by certain of its affiliated companies under license.

All third-party trademarks are the property of the respective third-party and may be protected by applicable copyright, trademark or other intellectual property laws and treaties. Each such third-party expressly reserves all rights into such intellectual property.

©2010 – 2018 Husky Injection Molding Systems Ltd. All rights reserved.
General Information

Telephone Support Numbers

<table>
<thead>
<tr>
<th>Region</th>
<th>Support</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>Toll free</td>
<td>1-800-465-HUSKY (4875)</td>
</tr>
<tr>
<td>Europe</td>
<td>EC (most countries)</td>
<td>008000 800 4300</td>
</tr>
<tr>
<td></td>
<td>Direct and Non-EC</td>
<td>+ (352) 52115-4300</td>
</tr>
<tr>
<td>Asia</td>
<td>Toll Free</td>
<td>800-820-1667</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>+86-21-3849-4520</td>
</tr>
<tr>
<td>Latin America</td>
<td>Brazil</td>
<td>+55-11-4589-7200</td>
</tr>
<tr>
<td></td>
<td>Mexico</td>
<td>+52-5550891160 option 5</td>
</tr>
</tbody>
</table>

For on-site service, contact your nearest Husky Regional Service and Sales office.
For non-emergency questions and issues you may also e-mail Husky at techsupport@husky.ca.

Husky Regional Service and Sales Offices

For the location closest to you, please visit www.husky.co.

Product Upgrades

Upgrades are available that can improve your output, reduce cycle times, and add functionality to your Husky equipment.

To see what upgrades are available for your Husky equipment, visit our website at www.husky.co or call your nearest Husky Regional Service and Sales Office.

Ordering Spare Parts

All spare parts for Husky equipment can be ordered through your nearest Husky Parts Distribution Center or online at www.husky.co.
Hot Runner Refurbishing

Husky offers services for repairing, modifying, and retrofitting Husky hot runners. Contact your Husky Regional Service and Sales office for details.
Table of Contents

General Information.. iii
 Telephone Support Numbers.. iii
 Husky Regional Service and Sales Offices.. iii
 Product Upgrades... iii
 Ordering Spare Parts.. iii
 Hot Runner Refurbishing... iv

Chapter 1: Introduction.. 9
 1.1 Purpose of the Equipment.. 9
 1.2 Restrictions of Use.. 9
 1.3 Unauthorized Modifications... 9
 1.4 Auxiliary Equipment.. 9
 1.5 Documentation.. 10
 1.5.1 Manuals... 10
 1.5.2 Engineering Drawings and Schematics... 11
 1.5.3 Safety Alert Conventions... 11
 1.6 Training.. 12
 1.7 Nameplates.. 12
 1.7.1 Hot Runner Nameplate.. 12
 1.8 Special Tools.. 14
 1.8.1 Nozzle Tip Sockets and Heater Removal Tools.. 14
 1.8.2 Nozzle Tip Torque Wrench... 15
 1.8.3 Tip Insert Removal Tools... 15
 1.8.4 Front Ring Removal Tools... 15
 1.8.5 Retaining Clip Installation Tool... 15
 1.8.6 Standard Nozzle Tip Sockets.. 15
 1.8.7 Thermocouple Wire Stripping Tools... 16
 1.8.8 Single Probe Thermocouple Removal Tools.. 17
 1.8.9 Crimping Tools for Contact Pins (25 or 64 Pin Connectors)... 17

Chapter 2: Safety Summary.. 19
 2.1 Qualified Personnel.. 19
 2.2 Safety Guidelines... 19
 2.3 Safety Hazards... 19
 2.3.1 Mechanical Hazards... 20
 2.3.2 Burn Hazards... 20
 2.3.3 High Pressure Hazards... 21
 2.3.4 Electrical Hazards... 22
 2.3.5 Gas, Vapor and Dust Emissions... 22
 2.3.6 Slip, Trip or Fall Hazards.. 22
 2.3.7 Lifting Hazards... 22
 2.4 Safety Signs.. 22
 2.5 Lockout and Tagout.. 24
5.8 Testing Heaters...59
5.9 Adjusting the Thermocouple Wire Length...59
5.10 Installing the Center Plate (If Equipped)..60
 5.10.1 Installing the Center Plate (If Equipped)..60
5.11 Installing the Backing Plate..63
 5.11.1 Installing the Backing Plate..63
5.12 Installing Nozzle Tips..65
 5.12.1 Installing the Nozzle Tips..65
 5.12.2 Troubleshooting Nozzle Tip Heights...67
5.13 Installing Nozzle Heaters and Nozzle Tip Insulators..67
 5.13.1 Installing HTM Heaters for U250 Systems..68
 5.13.2 Installing HTM Nozzle Heaters for U350, U500 and U750 Systems...69
 5.13.3 Installing HTM Nozzle Heaters for U1000 Systems...70
 5.13.4 Installing Copper Nozzle Heaters...72
 5.13.5 Installing Ultra Nozzle Heaters (UNH) with Front Rings...73
 5.13.6 Installing Ultra Nozzle Heaters (UNH) With Ring Thermocouples...75
 5.13.7 Installing Bi-Metal Heaters for U750 and U1000 Systems..77
 5.13.8 Installing Triton Heaters...78
 5.13.9 Installing Nozzle Tip Insulators..79
5.14 Installing the Cavity Plate..80
 5.14.1 Installing the Cavity Plate On a Work Bench...80
 5.14.2 Installing the Cavity Plate In the Machine..82
Chapter 1 Introduction

This chapter describes the manifold system, training opportunities, and the available equipment manuals.

1.1 Purpose of the Equipment

Husky equipment and systems are designed for injection molding applications only, using approved materials and operating within design guidelines.

Contact your nearest Husky Regional Service and Sales office if you plan to use a Husky product for anything other than its intended use.

1.2 Restrictions of Use

Husky injection molding equipment must never be:

- operated by more than one person
- used for any purpose other than that described in Section 1.1, unless otherwise approved by Husky
- used to extrude any materials not outlined in the scope of the harmonized EN201 or ANSI B151.1 standard
- operated or serviced by personnel unfamiliar with the inherent risks and necessary precautions related to injection molding equipment
- operated at temperatures higher than the maximum permissible temperature for the resin

1.3 Unauthorized Modifications

Unauthorized modifications or reconstruction of any Husky injection molding system is strictly prohibited. Modifications can be unsafe and/or void warranty.

Contact your nearest Husky Regional Service and Sales office to discuss modifications or requirements for Husky systems.

1.4 Auxiliary Equipment

Husky is only responsible for the interaction of Husky equipment and systems with auxiliary equipment when Husky is the system integrator. If auxiliary equipment is removed, the user must install proper safeguards to prevent access to the hazards.
For information about integrating non-Husky auxiliary equipment, contact your nearest Husky Regional Service and Sales office.

1.5 Documentation

A full set of manuals, drawings, schematics, certificates and other documentation are available for every Husky hot runner. The following describes the documentation provided with each system, along with common conventions all readers should be familiar with.

IMPORTANT!
Keep all manuals in a convenient location for future reference.

1.5.1 Manuals

Husky manuals aid in the safe and proper use of Husky products. Where applicable, the manuals provide instructions on installation, operation and maintenance.

Personnel should thoroughly review all manuals provided with their Husky equipment prior to performing any tasks. Proceed with tasks only if all instructions are understood and always follow applicable workplace safety requirements.

IMPORTANT!
Images in the manuals are for reference only and may not represent specific equipment details. Refer to engineering drawings and schematics and the HMI for specific details.

The following manuals are provided with each Husky machine upon delivery:

<table>
<thead>
<tr>
<th>Manual</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation Manual</td>
<td>Describes the basic installation of the manifold system.</td>
</tr>
<tr>
<td>Service Manual</td>
<td>Describes the installation, startup, operation, shut down and maintenance of the hot runner system. NOTE: Refer to the hot runner Service Manual for specific removal and maintenance instructions.</td>
</tr>
</tbody>
</table>

These manuals are available online through www.husky.co.
IMPORTANT!

Some manuals may contain addendums that detail new or updated information. Before reading a manual, make sure to review all available addendums located at the end of the manual.

1.5.2 Engineering Drawings and Schematics

Each Husky hot runner is provided with a set of drawings and schematics specific to the hot runner. These are used for troubleshooting the hot runner and ordering spare parts.

NOTE:

Each drawing and schematic is specific to the hot runner it is provided with.

1.5.3 Safety Alert Conventions

Safety alerts highlight hazardous conditions that may arise during installation, operation or maintenance and describe methods for avoiding personal injury and/or property damage.

Depending on the severity of the hazard, safety alerts start with one of the following signal words: Danger, Warning or Caution.

DANGER!

The DANGER safety alert indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury.

WARNING!

The WARNING safety alert indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION!

The CAUTION safety alert indicates a potentially hazardous situation that, if not avoided, could result in property damage.

Other non-safety related alert types used in the manuals highlight important information needed by the user to install, operate or maintain the equipment properly. They may also, in some cases, describe best practices, offer an expanded explanation, or reference a related section in the manual.

Non-safety related alerts start with one of the following signal words: Note or Important.
1.6 Training

All designated operators and maintenance personnel must be fully trained before using or servicing Husky injection molding systems.

If training is required, visit www.husky.co or contact your nearest Husky Regional Service and Sales office to learn more about Husky’s training solutions.

1.7 Nameplates

Nameplates are affixed to the operator’s side of the mold and hot runner for quick identification of the equipment type, source and general specifications.

1.7.1 Hot Runner Nameplate

Every hot runner nameplate lists the following information:
• the location where the hot runner was manufactured
• the project number
• the material type allowed to be used in the hot runner
• the melt and mold temperatures
• electrical requirements and specifications

NOTE:
Other details and specifications may be required.

IMPORTANT!
Each hot runner is designed to process a specific type and grade of resin/filler based on the customer’s requirements. Use of any other type or grade of resin/filler could affect part quality and/or the performance of the hot runner. Before using a different type or grade of resin/filler, contact Husky.

CAUTION!
Mechanical hazard – risk of damage to the hot runner. Never operate the hot runner outside of the melt and mold temperatures indicated on the nameplate. Internal resin leakage or component damage could occur.

![Hot Runner Nameplate (Sample)](image)

Figure 1-1: Hot Runner Nameplate (Sample)

1. Project Number
2. Resin Type Allowed
3. Melt and Mold Temperatures
4. Power Requirements
5. Temperature Warning
1.8 **Special Tools**

The following sections list various component-specific tools developed by Husky for use during maintenance of hot runner systems. Contact Husky to order special tools applicable to your hot runner system.

1.8.1 Nozzle Tip Sockets and Heater Removal Tools

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>Tip</th>
<th>Nozzle Tip Socket</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Hex Key)</td>
</tr>
<tr>
<td>U250</td>
<td>All</td>
<td>2996145</td>
<td>3163811 (Hex Key)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (Hex Driver)</td>
</tr>
<tr>
<td>U350</td>
<td>All</td>
<td>3872686 (0.25 in)</td>
<td>3163811 (Hex Key)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 mm (0.25 in)</td>
<td>OR 7287617 (Torque Wrench Assembly), 0.45 N·m (4 lbf·ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 points</td>
<td>OR 4715152 (Hex Driver)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR 3734732 Large Pitch >28 mm (1.1 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR 6599345 Small Pitch ≤28 mm (1.1 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td>U500</td>
<td>HT <16 Drop</td>
<td>2338059</td>
<td>2341532 (Bi-Metal and UNH with Front Ring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2695352 (Ultra Heater)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7307376 (UNH with Ring Thermocouple)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7287617 (HTM Heater) Torque Wrench Assembly, 0.45 N·m (4 lbf·ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td>HT ≥16 Drop</td>
<td>531983</td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7287617 (HTM Heater) Torque Wrench Assembly, 0.45 N·m (4 lbf·ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td>HT-CAP</td>
<td>3253169</td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td>U750</td>
<td>HT</td>
<td>2402461</td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7287617 (HTM Heater) Torque Wrench Assembly, 0.45 N·m (4 lbf·ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>535160 (Bi-Metal and UNH with Front Ring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7298786 (UNH with Ring Thermocouple)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td>HT-R TS</td>
<td>2449784</td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7287617 (HTM Heater) Torque Wrench Assembly, 0.45 N·m (4 lbf·ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>535160 (Bi-Metal and UNH with Front Ring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7298786 (UNH with Ring Thermocouple)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td>HT-CAP</td>
<td>2816670</td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td></td>
<td>Ultra EG MP</td>
<td>622974</td>
<td>3163811 (HTM Heater) Hex Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4715152 (HTM Heater) Hex Driver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7287617 (HTM Heater) Torque Wrench Assembly, 0.45 N·m (4 lbf·ft)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>535160 (Bi-Metal and UNH with Front Ring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7298786 (UNH with Ring Thermocouple)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td>U1000</td>
<td>HT TS</td>
<td>3311845</td>
<td>2410903 (Bi-Metal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
<tr>
<td></td>
<td>HT-CAP</td>
<td>3274535</td>
<td>2410903 (Bi-Metal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heater Removal Tool</td>
</tr>
</tbody>
</table>
1.8.2 Nozzle Tip Torque Wrench

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 250</td>
<td>2996144</td>
</tr>
</tbody>
</table>

1.8.3 Tip Insert Removal Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U500</td>
<td>2789767</td>
</tr>
<tr>
<td>U750</td>
<td>2787663</td>
</tr>
<tr>
<td>U750 Ultra Flow</td>
<td>3341023</td>
</tr>
<tr>
<td>U750 HT-UP</td>
<td>3388887</td>
</tr>
<tr>
<td>U1000</td>
<td>2641085</td>
</tr>
</tbody>
</table>

1.8.4 Front Ring Removal Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U500</td>
<td>3634736</td>
</tr>
<tr>
<td>U750</td>
<td>4925394</td>
</tr>
</tbody>
</table>

1.8.5 Retaining Clip Installation Tool

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>U350</td>
<td>4405801</td>
</tr>
</tbody>
</table>

1.8.6 Standard Nozzle Tip Sockets

<table>
<thead>
<tr>
<th>Size</th>
<th>Points</th>
<th>Drive</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td>6 (Allen Key)</td>
<td>3/8 inch</td>
<td>622974</td>
</tr>
<tr>
<td>Size</td>
<td>Points</td>
<td>Drive</td>
<td>Part Number</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>6 mm</td>
<td>6 (Allen Key)</td>
<td>3/8 inch</td>
<td>622972</td>
</tr>
<tr>
<td>6 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>533942</td>
</tr>
<tr>
<td>8 mm</td>
<td>6</td>
<td>1/4 inch</td>
<td>2996145</td>
</tr>
<tr>
<td>8 mm</td>
<td>12</td>
<td>1/4 inch</td>
<td>3436695</td>
</tr>
<tr>
<td>8 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>1501813</td>
</tr>
<tr>
<td>10 mm</td>
<td>12</td>
<td>3/8 inch</td>
<td>3253169</td>
</tr>
<tr>
<td>11 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>3320712</td>
</tr>
<tr>
<td>11 mm</td>
<td>12</td>
<td>3/8 inch</td>
<td>531983</td>
</tr>
<tr>
<td>12 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>2338059</td>
</tr>
<tr>
<td>13 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>536678</td>
</tr>
<tr>
<td>14 mm</td>
<td>12</td>
<td>3/8 inch</td>
<td>533533</td>
</tr>
<tr>
<td>15 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>2449784</td>
</tr>
<tr>
<td>15 mm</td>
<td>12</td>
<td>3/8 inch</td>
<td>3253170</td>
</tr>
<tr>
<td>16 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>2402461</td>
</tr>
<tr>
<td>16 mm</td>
<td>12</td>
<td>3/8 inch</td>
<td>2816670</td>
</tr>
<tr>
<td>17 mm</td>
<td>6</td>
<td>3/8 inch</td>
<td>2308879</td>
</tr>
<tr>
<td>20 mm</td>
<td>6</td>
<td>1/2 inch</td>
<td>3722920</td>
</tr>
<tr>
<td>21 mm</td>
<td>12</td>
<td>1/2 inch</td>
<td>3274535</td>
</tr>
<tr>
<td>22 mm</td>
<td>6</td>
<td>1/2 inch</td>
<td>3311845</td>
</tr>
<tr>
<td>22 mm</td>
<td>12</td>
<td>1/2 inch</td>
<td>2816672</td>
</tr>
<tr>
<td>29 mm</td>
<td>6</td>
<td>1/2 inch</td>
<td>1502743</td>
</tr>
<tr>
<td>30 mm</td>
<td>6</td>
<td>1/2 inch</td>
<td>535571</td>
</tr>
<tr>
<td>1/2 inch</td>
<td>6</td>
<td>3/8 inch</td>
<td>2192309</td>
</tr>
</tbody>
</table>

1.8.7 Thermocouple Wire Stripping Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strippers for Thermocouple Wires</td>
<td>4240042</td>
</tr>
</tbody>
</table>
1.8.8 Single Probe Thermocouple Removal Tools

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 mm Split Socket</td>
<td>4395427</td>
</tr>
</tbody>
</table>

1.8.9 Crimping Tools for Contact Pins (25 or 64 Pin Connectors)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crimp Tool</td>
<td>2292562</td>
</tr>
<tr>
<td>Locator</td>
<td>2292574</td>
</tr>
<tr>
<td>Removal Tool</td>
<td>534645</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crimp Dies</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 to 1.5 mm² (20 to 16 AWG)(^1)</td>
<td>238569</td>
</tr>
<tr>
<td>4.0 to 10 mm² (12 to 8 AWG)(^1)</td>
<td>2292575</td>
</tr>
<tr>
<td>0.14 to 4.0 mm² (26 to 12 AWG)(^2)</td>
<td>2292576</td>
</tr>
<tr>
<td>0.14 to 0.5 mm² (26 to 20 AWG)(^1)</td>
<td>2748316</td>
</tr>
<tr>
<td>1.5 to 2.5 mm² (16 to 14 AWG)(^1)</td>
<td>2748326</td>
</tr>
</tbody>
</table>

\(^1\) Stamped crimp pins.
\(^2\) Machined crimp pins.
Chapter 2 Safety Summary

This chapter describes the general requirements and conditions for safe installation, operation and maintenance of the manifold system.

IMPORTANT!

Personnel must read, understand and follow all safety precautions.

IMPORTANT!

Personnel must follow applicable industry and regulatory safety requirements for safe installation, operation and maintenance of equipment.

2.1 Qualified Personnel

Only fully trained and qualified personnel should be permitted to maintain equipment. Qualified personnel must have demonstrated skills and knowledge related to the construction, installation and operation of the injection molding equipment and have received safety training on the hazards involved.

2.2 Safety Guidelines

Personnel operating, installing, maintaining or servicing Husky equipment must adhere to safe working practices that are in compliance with the following guidelines:

- Lockout and tag electrical, pneumatic and hydraulic energy sources before servicing the mold/hot runner or entering the mold area
- Do not operate the mold/hot runner if scheduled preventive maintenance has not been performed
- Do not use a magnetic platen without approval from Husky and the magnetic platen supplier/manufacturer
- Do not operate a hot runner outside the maximum melt and mold temperatures specified on the hot runner nameplate

2.3 Safety Hazards

Some common safety hazards associated with injection molding equipment are:
• Mechanical
• Electrical
• Burn
• High pressure (hydraulic system pressure and molten material spray)
• Slip, trip or fall
• Lifting
• Gas, vapor and dust emissions
• Noise

2.3.1 Mechanical Hazards

• Worn Hoses and Safety Restraints
 Regularly inspect and replace all flexible hose assemblies and restraints.

• Cooling Water Hoses
 Cooling water hoses degrade over time and need to be replaced on a yearly basis. Degraded hoses become brittle and can break or separate from the fitting when manipulated. To minimize the risk of failure, inspect the hoses regularly and replace as required. Wait until the machine has cooled down before servicing cooling water hoses.

• Seized Screws or Plugs
 If screws or plugs cannot be removed by normal methods using standard tooling and force, there is a high possibility these items have become seized; contact Husky for repair recommendation.

WARNING!
Mechnical and/or flying debris hazard - Tool breakage: risk projectile debris, serious injury and/or mechanical damage. Do not use excessive force and/or use tools beyond their designated limits. Do not use torque multiplying bars. Failure of tools may produce fragments that can become projectiles that may cause injury. For seized parts, consult Husky for safe disassembly instructions.

NOTE:
Manifold plugs are not a field repairable item and should never be removed. These items can only be serviced at a Husky manufacturing location.

2.3.2 Burn Hazards

• Hot Surfaces
 The mold area, auxiliary mold equipment, and injection unit heating elements have numerous high temperature surfaces. At normal operating temperatures, contact with these surfaces will cause severe skin burns. These areas are clearly marked with safety signs. Wear personal protective equipment when working in these areas.
• Molten Material
Never touch process material purged or otherwise flowing from the nozzle, mold, hot runner or feed throat area. Molten material can appear cool on the surface, but remain very hot on the inside. Wear personal protective equipment when handling purged material.

2.3.3 High Pressure Hazards

WARNING!
Burn and hot resin spray hazard – risk of death, serious injury and/or damage to the hot runner. All nozzle and sprue heaters (if equipped) must be turned on when manifold heaters are turned on. Failure to do so could result in generation of dangerous pressure levels in the manifold, resulting in component failure and/or sudden release of hot resin.

Pressure inside the hot runner manifold(s) can increase to dangerous levels if the nozzle and sprue heaters (if equipped) are not turned on before or at the same time as the nozzle sprue.

The pressure is generated when the injection nozzle sprue is plugged with frozen resin and the residual resin in the manifold is heated. This pressure can release suddenly causing the resin plug to eject from the sprue and hot resin to spray from the nozzle tips. The risk of serious burn injuries as a result is increased.

Moisture that infiltrates and is trapped in the hot runner molten material can also increase the risks of this potential hazard. If the temperature of the water in the molten material becomes greater than 400 °C (725 °F), the pressure of this trapped water can be significant enough to rupture the metal housing and cause serious injury to personnel.

To avoid this hazard, do the following:

1. Always make sure all nozzle and sprue heaters (if equipped) are turned on any time manifold heaters are turned on outside of the mold. The nozzle and sprue heaters can be turned on independently of the manifold heaters, however, it is recommended that they be heated first or slaved to the manifold heaters so they heat up in unison.
2. Always make sure the nozzle tips are open and the nozzle housings are dry prior to applying heat to the manifold.

IMPORTANT!
In the event of water leaking onto or into the hot runner, the nozzle tips must be removed (cold) and the plastic in the nozzles drilled out to ensure they are open to atmosphere. This can be done using a standard twist drill with the cutting edges removed to prevent damage to the melt channel.

Replace the cavity plate prior to heating the system.
2.3.4 **Electrical Hazards**

- **Power Supply**
 Molding equipment draws high amperage current at high voltage. The electrical power requirements are indicated on the nameplate and in the electrical schematics. Connect equipment to a suitable power supply as specified in the electrical schematics and in compliance with all applicable local regulations.

- **Water**
 Water on the hot runner can be in close proximity to electrical connections and equipment. This can lead to a short circuit, resulting in serious electrical damage to the equipment. Always keep water lines, hoses, and hose fittings in good condition to avoid leaks.

2.3.5 **Gas, Vapor and Dust Emissions**

Certain processed materials release harmful gas, vapors or dust. Install an exhaust system according to local codes.

2.3.6 **Slip, Trip or Fall Hazards**

Do not walk, stand, climb or sit on machine surfaces not approved for safe access.

Do not step on the tie bar or any surfaces with grease and/or oil.

Use a safety approved platform, walkway and step ladders designated to access areas that are not accessible from the floor.

2.3.7 **Lifting Hazards**

When lifting equipment, use suitable lifting devices, proper balancing techniques and designated lifting points. Refer to the installation details for handling and lifting instructions. Do not exceed the rated capacity of the lifting equipment.

2.4 **Safety Signs**

Safety signs clearly mark potentially hazardous areas in or around equipment. For the safety of personnel involved in equipment installation, operation and maintenance, use the following guidelines:

- Verify that all signs are in the proper locations. Refer to the drawing package for details.
- Do not alter signs.
- Keep signs clean and visible.
- Order replacement signs when necessary. Refer to the drawing package for part numbers.

The following safety symbols may appear on safety signs:
NOTE:
Safety signs may include a detailed explanation of the potential hazard and associated consequences.

<table>
<thead>
<tr>
<th>Safety Symbol</th>
<th>General Description of Symbol</th>
</tr>
</thead>
</table>
| ![General](image) | **General**
This symbol indicates a potential personal injury hazard. It is usually accompanied by another pictogram or text to describe the hazard. |
| ![Hazardous Voltage](image) | **Hazardous Voltage**
This symbol indicates a potential electrical hazard that will cause death or serious injury. |
| ![High Pressure Molten Material](image) | **High Pressure Molten Material**
This symbol indicates the presence of a high pressure molten material hazard that could cause death or severe burns. |
| ![Lockout/Tagout](image) | **Lockout/Tagout**
This symbol identifies an energy source (electrical, hydraulic or pneumatic) that must be de-energized before maintenance is performed. |
| ![Crushing and/or Impact Points](image) | **Crushing and/or Impact Points**
This symbol indicates a crushing and/or impact area that could cause serious crushing injury. |
| ![High Pressure](image) | **High Pressure**
This symbol indicates a heated water, steam or gas hazard that could cause severe injury. |
| ![High Pressure Accumulator](image) | **High Pressure Accumulator**
This symbol indicates the sudden release of high pressure gas or oil could cause death or serious injury. |
| ![Hot Surfaces](image) | **Hot Surfaces**
This symbol identifies the presence of exposed hot surfaces that could cause serious burn injuries. |
<table>
<thead>
<tr>
<th>Safety Symbol</th>
<th>General Description of Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slip, Trip or Fall Hazard
This symbol indicates a slip, trip or fall hazard that could cause injury.</td>
</tr>
<tr>
<td></td>
<td>Do Not Step
This symbol identifies a location that should not be used as a step because it may be a slip, trip or fall hazard and could cause injury.</td>
</tr>
<tr>
<td></td>
<td>Crushing and/or Shearing Hazard
This symbol indicates the presence of a crushing and/or shearing hazard at the rotating screw that could cause serious injury.</td>
</tr>
<tr>
<td></td>
<td>Read Manual Before Operation
This symbol indicates that qualified personnel should read and understand all instructions in the equipment manuals before working on the equipment.</td>
</tr>
<tr>
<td></td>
<td>Class 2 Laser Beam
This symbol indicates a laser beam hazard that could cause personal injury with prolonged exposure.</td>
</tr>
<tr>
<td></td>
<td>Barrel Cover Grounding Strap
This symbol indicates an electrical hazard related to the barrel cover grounding strap that could cause death or serious injury.</td>
</tr>
<tr>
<td></td>
<td>Do Not Grease
This symbol indicates greasing is not required under normal operating conditions. Greasing could cause equipment failure.</td>
</tr>
</tbody>
</table>

2.5 Lockout and Tagout

A lockout/tagout procedure in accordance with local codes must be performed on the machine, controller and auxiliary equipment before any maintenance activities are performed while in the machine or connected to an external energy source.
WARNING!
Complete the Lockout/Tag out of all energy sources in accordance with applicable local codes before performing maintenance activities. Failure to do so could result in serious injury or death. Refer to the machine and associated equipment manufacturer’s manual for instructions.

Only qualified personnel should be permitted to install and remove locks and tags.

Lockout and tagout includes: the isolation of energy; depletion of stored energy; and prevention of re-energization from all energy sources.

2.6 Personal Protective Equipment and Safety Equipment

Personal injury can be avoided when personnel wear appropriate protective gear and use special safety equipment. The following describes the safety gear and equipment that should be used when working with the machine and any auxiliary equipment.

2.6.1 Personal Protective Equipment (PPE)

Wear appropriate personal protective equipment when working on or near equipment. Standard personal protective equipment includes:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Glasses</td>
<td>For protecting the eyes from flying objects/particles, heat, sparks, splash from molten material, and more.</td>
<td></td>
</tr>
<tr>
<td>Face Shield</td>
<td>For protecting the entire face area from flying objects/particles, heat, sparks, splash from molten material, and more.</td>
<td></td>
</tr>
<tr>
<td>Heat Resistant Gloves</td>
<td>For protecting the hands from extreme heats.</td>
<td></td>
</tr>
<tr>
<td>Hearing Protection</td>
<td>For protecting the ears from loud ambient noise.</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Safety Shoes</td>
<td>For protecting the feet from electrical shocks, crushing hazards, puncture hazards, splash from molten material, and more.</td>
<td></td>
</tr>
<tr>
<td>Non-Melting Natural Fiber Pants and Long Sleeved Shirt</td>
<td>For protecting the body from abrasions, cuts, and potential splash from molten material.</td>
<td></td>
</tr>
</tbody>
</table>

2.6.2 Safety Equipment

Use appropriate safety equipment when working on or near equipment.

Standard safety equipment includes:

- **Exhaust Fan**
 For collecting potentially harmful plastic fumes

- **Purging Container**
 For containing hot resin purged from the injection unit

- **Vacuum Cleaner**
 For collecting spilled resin pellets and other debris that may create a falling hazard

- **Stairs and Ladders**
 For ensuring safe access to areas of the machine

- **Danger Signs**
 For warning other personnel to stand clear of a component or area of the machine

- **Locks and Tags**
 For preventing the use of specific systems and components

- **Fire Extinguishers**
 For the expedient suppression of small fires

- **Telescopic Mirror**
 For safely inspecting hot runner nozzle tips from outside the mold area

- **Brass Hammers and Brass Rods**
 For safely removing dried resin deposits
2.7 Material Safety Data Sheet (MSDS)

WARNING!

Chemical hazard - Some of the chemicals used with Husky equipment are potentially hazardous and could cause injury and illness. Before storing, handling, or working with any chemical or hazardous material, thoroughly read and understand each applicable Material Safety Data Sheet (MSDS), use recommended personal protective equipment and follow the manufacturer’s instructions.

The Material Safety Data Sheet (MSDS) is a technical document which indicates the potential health effects of a hazardous product. It contains safety guidelines to protect personnel, as well as information about use, storage, handling, and emergency procedures.

Always refer to the applicable Material Safety Data Sheet before doing the following:

- handling a chemical product
- disassembling any portion of Husky equipment that may result in exposure to a chemical product

Contact the material supplier to obtain a copy of the MSDS sheet.

2.8 Materials, Parts and Processing

To prevent personal injury or damage to the equipment, make sure of the following:

- The equipment is only used for its intended purpose, as described in the manuals
- The operating temperatures do not exceed the specified permissible maximum value for the resin
- The maximum temperature set point is set below the flash point of the material being processed
- Lubricants, oils, process materials and tools used on equipment meet Husky specifications
- Only authentic Husky parts are used

2.9 Safety Latch Bars

All mold and hot runner assemblies are delivered with safety latch bars installed on the operator and non-operator side of the assembly.

Safety latch bars are used to hold plates together for maintenance and installation purposes. They provide a safe means for transporting and handling the assembly, and for securing plates that are normally fastened together during normal operation.
WARNING!
Crushing hazard – risk of death or serious injury. Plates could separate from each other and fall during handling if not properly secured. Under no circumstances are multiple plates to be handled with only one safety latch bar installed.

Safety latch bars must always be installed in pairs on diagonally opposite sides of the mold and hot runner assembly to provide equal pull on the plates.

NOTE:
Specific instructions on how to install safety latch bars are provided when needed in this manual.

2.10 Lift Bars and Swivel Hoist Rings

Every mold and hot runner assembly is equipped with tapped lift holes for lifting either the complete assembly or individual plates. Husky only supplies special lifting equipment (including a lift bar and swivel hoist rings) when required. This lifting equipment is designed specifically for the mold/hot runner assembly. When Husky provides special lifting equipment, use only Husky specified and supplied lifting equipment.

NOTE:
Separate lift bars for the hot and cold halves of the mold and hot runner assembly may be provided based on the requirements of the assembly.

IMPORTANT!
Make sure all lifting equipment is rated for the load and in safe operating condition. Follow the recommendations and use care when moving or handling plates or assemblies.

For instructions about lifting plates and plate assemblies and using the Husky provided lift bar and swivel hoist rings, refer to Section 4.1.

NOTE:
The Husky provided lift bar, swivel hoist rings and associated hardware must be stored together while the mold, hot runner, tooling plate and CoolPik plate are in operation.
Chapter 3 Specifications

This chapter outlines the necessary temperature, electrical, air and lubricant information needed to operate and maintain the manifold system.

3.1 Weight

The full weight of the manifold system assembly is listed on the assembly drawings.

3.2 Operating Temperature

The hot runner must operate within a specific temperature range to prevent internal resin leakage and damage to internal components as the result of thermal expansion. This temperature range is listed on the hot runner nameplate as the temperature difference between the manifold and the mold.

IMPORTANT!
The temperature range is critical for the hot runner system to be able to create a proper seal. It is important the designed operating temperature window be observed at all times.

For more information about the nameplate, refer to Section 1.7.1.

3.3 Electrical System Specifications

Refer to the electrical schematic for the following information:

- Control zones
- Multi-pin connector and pin positions for each heater and thermocouple wire
- Connecting heater wiring in parallel (if applicable)
- Amperage, wattage and resistance of each heater
- Keypin locations

3.3.1 Controller Requirements

The number of control zones required for the heaters will depend on the size and requirements of the basic system.
DANGER!
Electrical hazard – risk of serious injury, fire and/or overload of electrical components. Do not use a controller with an amperage rating less than that required by the heaters. Do not use a controller with a higher amperage rating than the connectors or cables to the hot runner.

The type of controller can be either:

- Automatic control using a thermocouple to sense the nozzle tip temperature
- Manual control where the controller is set to provide power during a percentage of time

There may be an optional switchbox for turning ON or OFF the power to individual nozzle heaters.

NOTE:
The controller output to the heaters must be set to 220 to 240 V, 50 to 60 Hz single phase.

3.3.2 Nozzle Heaters

The nozzle heaters can be controlled separately or in zones by manual controllers. Refer to the electrical schematic for the correct configuration.

3.3.3 Manifold Heaters

Whenever possible, the manifold heaters are wired in parallel and controlled by a single controller zone. The circuit will be completed either at the cable connector or at the manifold.

The heaters are connected in multiple zones if the total amperage of all the heaters connected in parallel exceeds the capacity of a single controller zone.

Each zone is connected to a separate controller zone with its own thermocouple.

3.3.3.1 Spare Thermocouple Wires

The temperature of each manifold heater zone is sensed by a J-type thermocouple.

NOTE:
Special order thermocouples may be other types.

A spare thermocouple for each zone is also be routed to the base of the multi-pin connector to minimize down time. Should the main thermocouple fail, the spare can be easily connected without having to disassemble the mold. The failed thermocouple can be replaced at the next maintenance interval.

The spare thermocouples can also be used to verify the condition of the first thermocouple should a sensing problem develop.
NOTE:
To establish proper polarity when connecting thermocouples, follow the electrical schematic. For J-type thermocouples, the white wire is positive (+) and the red wire is negative (−). This wire color coding follows the ANSI J-Type North American Standard. The color coding and wire composition for J-type thermocouples in other parts of the world may be different and produce different readings.

3.3.4 Power Fluctuation

Hot runner systems are sensitive to fluctuations in power supply voltage. The nozzle and manifold heaters are rated for 240 V (or 200 V in special applications).

NOTE:
Always refer to the hot runner nameplate on the operator’s side of the clamp before installing a hot runner. For more information on the nameplate, refer to Section 1.7.

The manifold is always controlled by thermocouples and will compensate for minor voltage fluctuations.

Where the nozzle heaters are regulated by percentage timers, the heat output will be directly affected by voltage fluctuations. For example, a reduction of the voltage by only 10% will affect output (in Watts) by approximately 20%, which will reduce the nozzle temperatures considerably. Adjustment is required.

In severe cases where the stability of the power supply is known to be unreliable, it may be advisable to install an automatic voltage stabilizer rated for the power requirements of the controller.

3.4 Recommended Lubricants

The following are recommended lubricants to be used during the assembly and maintenance of Husky hot runners:

NOTE:
Husky recommends only the following lubricants and assumes no responsibility for lubricants not specified. It is the customer’s responsibility when consulting with an alternate supplier to make sure a suitable equivalent is used.

NOTE:
Lubricants of inferior quality can cause premature wear of components.
WARNING!
Chemical hazard - Some of the chemicals used with Husky equipment are potentially hazardous and could cause injury and illness. Before storing, handling, or working with any chemical or hazardous material, thoroughly read and understand each applicable Material Safety Data Sheet (MSDS), use recommended personal protective equipment and follow the manufacturer’s instructions.

CAUTION!
Contamination hazard – risk of contaminating lubricants or greases. Do not mix different brands or grades of lubricants or greases. Mixing lubricants or greases can cause premature breakdown of the lubricant or grease and could result in equipment damage.

WARNING!
Poison hazard – risk of death or serious injury. Some recommended lubricants may contain toxic and/or non-ingestible additives and may not be Food and Drug Administration (FDA) approved under the United States Department of Agriculture (USDA) rating H1 (formerly AA). Consult with the lubricant manufacturer for specific details.

<table>
<thead>
<tr>
<th>Type/Description</th>
<th>Trade Name</th>
<th>Part Number</th>
<th>Quantity</th>
<th>Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static application Grease</td>
<td>Kem-A-Trix Fahrenheit 800 Bearing Gel</td>
<td>3936720</td>
<td>113 g (4 oz) Squeeze Tube</td>
<td>Guide pins, alignment dowels, screw heads and threads, O-ring seals¹¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3936725</td>
<td>397 g (14 oz) Grease Gun Tube</td>
<td></td>
</tr>
<tr>
<td>High temperature Anti-seize lubricant</td>
<td>Loctite Nickel Anti-Seize 771</td>
<td>5541918</td>
<td>225 g (8 oz) Can</td>
<td>Screws installed into the manifold</td>
</tr>
<tr>
<td>Protective spray</td>
<td>LPS 2 Lubricant</td>
<td>1501808</td>
<td>566 g (20 oz) Non-Aerosol Spray Bottle</td>
<td>Hot runner plates</td>
</tr>
<tr>
<td>Thread-locking fluid</td>
<td>Loctite 248</td>
<td>5541916</td>
<td>9 g (0.32 oz) Glue Stick</td>
<td>Screws that secure the manifold</td>
</tr>
</tbody>
</table>

¹¹ Apply only as directed. Refer to maintenance procedures and/or assembly drawings for more information.

3.5 Rust Inhibitor Specifications

Any rust inhibitor used on the mold must meet the following specifications:
<table>
<thead>
<tr>
<th>Type</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protective Spray</td>
<td>LPS 2 Protective Spray</td>
</tr>
</tbody>
</table>

3.6 Torque Specifications

Torque specifications are provided on the assembly drawings.

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Use of improper torque can result in equipment damage. Always consult the assembly drawings for torque specifications.
Chapter 4 Lifting and Handling

This chapter describes how to safely lift and handle the hot runner assembly.

IMPORTANT!
The procedures contained in this chapter were written for a standard hot runner and do not take special options into consideration.

4.1 Lifting and Handling

The following procedures describe how to safely lift plates and plate assemblies.

CAUTION!
Mechanical hazard – risk of damage to the hot runner. Do not lift plates using magnetic lifting devices. These devices could potentially scratch a finely ground plate.

IMPORTANT!
Safety must be the primary consideration when lifting and moving a plate. Make sure to always use suitable lifting equipment that is inspected regularly and follow the recommendations outlined in this manual.

IMPORTANT!
Every mold and hot runner assembly is equipped with tapped lift holes for lifting either the complete assembly or individual plates. Husky only supplies special lifting equipment (including a lift bar and swivel hoist rings) when required. This lifting equipment is designed specifically for the mold/hot runner assembly. When Husky provides special lifting equipment, use only Husky specified and supplied lifting equipment.

4.1.1 Lifting and Handling Using a Single Lifting Point

The following procedures describe how to lift and lower plates using a single lifting point.

4.1.1.1 Laying Down Plates Using a Single Lifting Point

To properly lay a plate on a work surface using a single lifting point, do the following:
WARNING!
Crushing hazard – risk of death or serious injury. Inadequate lifting equipment can fail and
could cause death or serious injury. Make sure all lifting equipment is rated for the load and
in safe operating condition.

1. Install a lift bar or swivel hoist ring and connect it to an overhead lifting device.
 • For information about lifting using a lift bar, refer to Section 4.1.3
 • For information about lifting using swivel hoist rings, refer to Section 4.1.4

2. Lift the plate above the work surface.

 ![Diagram of Laying Down a Plate]

 Figure 4-1: Laying Down a Plate
 1. Overhead Lifting Device 2. Wood Block

3. Secure a wood block to the work surface on the side opposite the area where the plate will be laid down.

4. Lower the plate slowly onto the edge of the secured wood block.

5. Continue to slowly lower the plate until it tips over towards the work surface.

6. Lay the plate down on the work surface.

4.1.1.2 Picking Up Plates Using a Single Lifting Point

When lifting a plate that has been laid down using a single lifting point, the lifting device may go slack just as the load is in its full vertical position. This may cause the plate to swing over-center in the opposite direction.

To prevent this from happening, do the following:
WARNING!

Crushing hazard – risk of death or serious injury. Inadequate lifting equipment can fail and could cause death or serious injury. Make sure all lifting equipment is rated for the load and in safe operating condition.

1. Install a lift bar or swivel hoist ring and connect it to an overhead lifting device.
 - For information about lifting using a lift bar, refer to Section 4.1.3
 - For information about lifting using swivel hoist rings, refer to Section 4.1.4
2. Secure a wood block to the work surface near the foot of the plate. This will prevent the plate from going over-center.

![Figure 4-2: Picking Up a Plate](image)

1. Overhead Lifting Device
2. Wood Block

3. Lift the plate until it touches the secured wood block.

WARNING!

Impact hazard – risk of serious injury. The plate could swing in a pendulum motion just as the plate is lifted off of the wood block. Lift slowly to reduce the pendulum motion. Stand clear of the possible swing area to prevent injury.

4. Continue to lift the plate, keeping the tension on the lifting cable.

CAUTION!

Mechanical hazard – risk of damage to equipment. When storing the plate, make sure it is secured in the vertical or horizontal position. Do not rest the plate against another object.

5. After the plate has stabilized, move it to a safe location and remove the wood block.
4.1.2 Lifting and Handling Using Multiple Lifting Points

To lift a plate using more than one lifting point, do the following:

WARNING!

Crushing hazard – risk of death or serious injury. Inadequate lifting equipment can fail and could cause death or serious injury. Make sure all lifting equipment is rated for the load and in safe operating condition.

1. Install the swivel hoist rings in the designated lifting points. Make sure the swivel hoist rings are positioned on opposite sides of the plate to evenly distribute the weight when the plate is lifted vertically.

 For information about lifting using swivel hoist rings, refer to Section 4.1.4.

2. Connect the swivel hoist rings to an overhead lifting device. Use a spreader bar if either of the following conditions occur:
 - The pivot angle of any swivel hoist ring exceeds 90°
 - The angle of lifting cables, slings or chains is less than 45°

3. Lift the plate and move it to a safe location.

4.1.3 Lifting Using a Lift Bar

To properly lift plates and assemblies using a lift bar, do the following:
NOTE:
For the installation locations of the lift bars, refer to the hot runner for the markings “Lift Bar Only” or to the assembly drawings.

NOTE:
The maximum weight the bar can lift is stamped on the Husky lift bar. If using a lift bar that is not provided by Husky, make sure the lift bar is suitably rated for the weight of the mold/hot runner assembly.

1. Install the lift bar to the lifting holes on the top of the component.

2. Torque the hoist ring to the specified value. Refer to Section 3.6 for torque requirements.

3. Attach a suitable overhead lifting device to the swivel hoist ring and lift the plate or plate assembly vertically.

4. While the mold and hot runner are in operation, store the Husky provided lifting equipment together and in a readily accessible area.

4.1.4 Lifting Using Swivel Hoist Rings

When using swivel hoist rings, remember the following:

- For the installation locations of the swivel hoist rings, refer to the hot runner for the markings “Hoist Ring Only” or to the assembly drawings.
- Always make sure the swivel hoist ring is properly torqued before lifting.
- Make sure the swivel hoist ring used can support the weight of the plate or component at the chosen angle of attack.
- Do not lift more than the rated capacity.

Figure 4-4: Lifting with a Lift Bar

1. Swivel Hoist Ring
2. Lift Bar
3. Screw

• Depending upon the sling angle, the applied load may be more than the weight being lifted. Two point lifting of a 1000 kg (2000 lb) weight, with a sling angle of 30°, will result in an applied load of 1000 kg (2000 lb) to each hoist ring.
• After installation, make sure the hoist ring swivels and pivots freely in all directions. The side of the ring must not contact anything.
• After installation and during operation, store the Husky provided lifting equipment together and in a readily accessible area.
• Never use a hook or other lifting device which will pry or open the “U” shaped bar on center-pull hoist rings.
• Screws must be tightened to the recommended torque values.
• Do not apply shock loads. When lifting, apply force gradually.
• Do not use spacers between the hoist ring bushing and the work piece surface.
• The work piece surface must be flat, providing complete contact for the hoist ring bushing.

Metric and Imperial swivel hoist rings are available through your nearest Husky Parts Distribution Center.

Swivel hoist rings purchased from other suppliers must meet or exceed the following specifications.

Table 4-1: General Hoist Ring Specifications

<table>
<thead>
<tr>
<th>Category</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>4140 certified aircraft quality</td>
</tr>
<tr>
<td>Type</td>
<td>Forged hoist ring</td>
</tr>
<tr>
<td>Finish</td>
<td>Phosphate per DOD-P-16232F</td>
</tr>
<tr>
<td>Safety Factor</td>
<td>5:1</td>
</tr>
<tr>
<td>Swivel</td>
<td>Pivot 180° and swivel 360°</td>
</tr>
<tr>
<td>Thread</td>
<td>ISO 261 and ISO 965 - Coarse</td>
</tr>
<tr>
<td>Surface</td>
<td>Magnetic particle inspected (ASTM E709-80)</td>
</tr>
<tr>
<td>Certification</td>
<td>Individual certificate of conformance with the serial number specified on the hoist ring for traceability</td>
</tr>
</tbody>
</table>

Table 4-2: Specifications for Metric Coarse Swivel Hoist Rings

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Rated Capacity[1]</th>
<th>Torque</th>
<th>Thread Ø</th>
<th>Minimum Full Thread Depth</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>2761800</td>
<td>1050 kg (2315 lb)</td>
<td>37 N-m (27 lbf-ft)</td>
<td>M12</td>
<td>24</td>
<td>1.75</td>
</tr>
<tr>
<td>2770570</td>
<td>1900 kg (4189 lb)</td>
<td>80 N-m (59 lbf-ft)</td>
<td>M16</td>
<td>32</td>
<td>2.00</td>
</tr>
<tr>
<td>2502267</td>
<td>4200 kg (9259 lb)</td>
<td>311 N-m (229 lbf-ft)</td>
<td>M24</td>
<td>48</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Table 4-2: Specifications for Metric Coarse Swivel Hoist Rings (Continued)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Rated Capacity[1]</th>
<th>Torque</th>
<th>Thread Ø</th>
<th>Minimum Full Thread Depth</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>536013</td>
<td>7000 kg (15432 lb)</td>
<td>637 N·m (470 lbf·ft)</td>
<td>M30</td>
<td>60</td>
<td>3.50</td>
</tr>
<tr>
<td>2761801</td>
<td>11000 kg (24250 lb)</td>
<td>1085 N·m (800 lbf·ft)</td>
<td>M36</td>
<td>72</td>
<td>4.00</td>
</tr>
<tr>
<td>2761803</td>
<td>12500 kg (27558 lb)</td>
<td>1085 N·m (800 lbf·ft)</td>
<td>M42</td>
<td>84</td>
<td>4.50</td>
</tr>
</tbody>
</table>

[1] Minimum rated capacity at any pull angle (between 0° horizontal pull and 90° vertical pull)

Table 4-3: Specifications for Inch UNC Swivel Hoist Rings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2732764</td>
<td>1130 kg (2500 lb)</td>
<td>38 N·m (28 lbf·ft)</td>
<td>1/2</td>
<td>1.0</td>
<td>13</td>
</tr>
<tr>
<td>2732765</td>
<td>2260 kg (5000 lb)</td>
<td>135 N·m (100 lbf·ft)</td>
<td>3/4</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>2760517</td>
<td>4530 kg (10000 lb)</td>
<td>310 N·m (229 lbf·ft)</td>
<td>1</td>
<td>2.0</td>
<td>8</td>
</tr>
<tr>
<td>2732766</td>
<td>6800 kg (15000 lb)</td>
<td>640 N·m (472 lbf·ft)</td>
<td>1 1/4</td>
<td>2.5</td>
<td>7</td>
</tr>
<tr>
<td>2732767</td>
<td>10880 kg (24000 lb)</td>
<td>1080 N·m (797 lbf·ft)</td>
<td>1 1/2</td>
<td>3.0</td>
<td>6</td>
</tr>
</tbody>
</table>

[2] Minimum rated capacity at any pull angle (between 0° horizontal pull and 90° vertical pull)
Chapter 5 Manifold System Assembly

This chapter describes the tasks required to assemble the manifold system. Refer to Section 5.1 for a full list of assembly procedures.

NOTE:
Unless specified otherwise, all bolts, screws, fittings and other hardware should be torqued to the values listed on the assembly drawings specific to the hot runner.

WARNING!
Chemical hazard - Some of the chemicals used with Husky equipment are potentially hazardous and may cause injury and illness. Before storing, handling, or working with any chemical or hazardous material, thoroughly read and understand each applicable Material Safety Data Sheet (MSDS), use recommended personal protective equipment and follow the manufacturer’s instructions.

IMPORTANT!
The procedures contained in this chapter were written for a standard hot runner and do not take special options into consideration.

IMPORTANT!
For maintenance recommendations and procedures, please refer to the appropriate Service Manual.

IMPORTANT!
Hot runners may not be put into service in a machine that does not comply with the provisions of Machinery Directive 2006/42/EC, as amended, and with the regulations transposing it into national law.

5.1 Assembly Procedures

The following procedures are to be performed when installing the manifold system.
5.2 Installing Nozzle Housings

The following procedures describe how to install nozzle housings.

5.2.1 Installing Nozzle Housings

To install the nozzle housings, do the following:

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Do not hone the back surface of the nozzle housing to remove nicks and burrs. The back surface is a precision made section of the housing with a contoured surface. Honing this section will cause the system to leak and void the leak proof guarantee for the hot runner.

1. Inspect all nozzle stack components for damage or wear. Contact Husky regarding replacement as necessary.
2. Make sure nozzle housings and threads are clean.
3. Assemble each nozzle housing.
NOTE:
Refer to the assembly drawings to verify the orientation and correct number of Ultra springs.

Figure 5-1: Nozzle Stack Assembly and Installation

4. Place all housing assemblies into the nozzle bores in the manifold plate. Make sure the housing assemblies are properly aligned with the nozzle locating dowels to prevent rotation.

5. Install the manifolds and cross manifold (if equipped). Refer to Section 5.3 for more information.

6. If equipped, install the center plate. Refer to Section 5.10.1 for more information.

7. Install the backing plate. Refer to Section 5.11.1 for more information.

8. Install the nozzle heaters and thermocouples. Refer to Section 5.13 for more information.

9. Install the nozzle tip. Refer to Section 5.12 for more information.

10. Install the cavity plate. Refer to Section 5.14 for more information.

5.3 Installing Manifolds

The following procedures describe how to install the manifolds.

5.3.1 Installing a Manifold

To install a manifold, do the following:

NOTE:
The following procedure requires the use of an overhead lifting device. Refer to Section 4.1 for lifting and handling instructions.
1. Install the locating insulator, manifold locating dowel(s) and nozzle locating dowels into the manifold plate pocket.

![Figure 5-2: Assembling the Manifold Plate (Typical)]

1. Nozzle Locating Dowel
2. Screw
3. Locating Insulator
4. Manifold Locating Dowel

2. If removed previously, install the nozzle housings in the manifold plate. Refer to Section 5.2.1 for more information.

3. If the manifold has lifting points, do the following:

WARNING!

Crushing hazard – risk of death or serious injury. Inadequate lifting equipment could fail and cause death or serious injury. Make sure all lifting equipment is rated for the load and in safe operating condition.

a. Install hoist rings in the designated lifting points marked on the manifold.

![Figure 5-3: Installing a Manifold]

1. Manifold
2. Hoist Ring

b. Attach an overhead lifting device to the hoist rings.
4. Lift the manifold over the manifold plate pocket.
5. Lower the manifold into position onto the locating insulator and locating dowel. Adjust the manifold to engage the locating features.
6. If hoist rings are installed, disconnect the overhead lifting device and remove the hoist rings.
7. Apply a thread-locking fluid to the threads of the screws that secure the manifold to the manifold plate. Refer to Section 3.4 for information about recommended lubricants.

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Screws used to secure the manifolds must remain loose until the preload is measured. Overtightening the screws could overextend the nozzle housings or damage components under the manifold that are not properly seated.

8. Install and hand tighten the screws. Do not apply torque.

![Figure 5-4: Installing the Screws](image)

1. Manifold
2. Screws

9. Turn the manifold hold down screws counter-clockwise 1/4 turn.
10. Measure the preload for the manifold. Refer to Section 5.7 for more information.

IMPORTANT!

All wiring near the manifold heater must be either a high temperature braid or sleeved using high temperature sleeving.

11. Route the manifold heater and thermocouple wires through the exit channels at the top of the manifold plate.
12. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.
13. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.
14. Apply a high temperature anti-seize lubricant to the screws used to install the backup insulators. Refer to Section 3.4 for information about recommended lubricants.
15. Install the backup insulators.

![Backup Insulator Assembly](image)

Figure 5-5: Backup Insulator Assembly

1. Backup Insulator
2. Screw

16. If equipped, install the transfer bushings. Refer to Section 5.6.1 for more information.
17. If equipped, install the center plate. Refer to Section 5.10.1 for more information.
18. If equipped, install the sprue bushing or cross manifold.
 - For information about installing the sprue bushing, refer to Section 5.4.1.
 - For information about installing the cross manifold, refer to Section 5.3.2
19. Install the backing plate. Refer to Section 5.11.1 for more information.

5.3.2 Installing a Cross Manifold (If Equipped)

To install the cross manifold, do the following:

NOTE:

The following procedure requires the use of an overhead lifting device. Refer to Section 4.1 for lifting and handling instructions.

1. Make sure the manifolds are installed. Refer to Section 5.3.1 for more information.
2. Insert the spring packs and alignment dowels into the cross manifold pocket in the backing plate.
3. Install the sprue bushing. Refer to Section 5.4.1 for more information.
4. If the cross manifold has lifting points, do the following:

WARNING!

Crushing hazard – risk of death or serious injury. Inadequate lifting equipment can fail and cause death or serious injury. Make sure all lifting equipment is rated for the load and in safe operating condition.

a. Install hoist rings in the designated lifting points marked on the cross manifold.
b. Attach an overhead lifting device to the hoist rings.

5. Lift the cross manifold and sprue bushing over the backing plate pocket.

6. Lower the cross manifold onto the spring packs and alignment dowels. Adjust the cross manifold to engage the locating features.

7. If hoist rings are installed, disconnect the overhead lifting device and remove the hoist rings.

8. Apply a thread-locking fluid to the threads of the screws that secure the cross manifold to the backing plate. Refer to Section 3.4 for information about recommended lubricants.

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Screws used to secure the manifolds must remain loose until the preload is measured. Overtightening the screws could overextend the nozzle housings or damage components under the manifold that are not properly seated.

9. Install and hand tighten the screws. Do not apply torque.

10. Turn the screws counter-clockwise 1/4 turn.

11. Measure the preload for the cross manifold. Refer to Section 5.7 for more information.

IMPORTANT!

All wiring near the manifold heater must be either a high temperature braid or sleeved using high temperature sleeving.

12. Route the cross manifold heater and thermocouple wires through the wire channels in the backing plate. Make sure all wiring is properly retained in the wire channels using wire clips.

13. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

14. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

15. Test each cross manifold heater. Refer to Section 5.8 for more information.

16. Install the backing plate. Refer to Section 5.11.1 for more information.
5.4 Installing the Sprue Bushing

The following procedure describes how to install the sprue bushing.

5.4.1 Installing the Sprue Bushing

To install the sprue bushing, do the following:

WARNING!

Hot resin spray hazard – risk of serious injury. Any contamination or damage at the sprue bushing and manifold interface could cause hot resin to spray out of the mold, possibly resulting in serious burns. Both the mounting faces of the sprue bushing and manifold must be spotlessly clean and undamaged. The mounting screws must also be torqued to the specified value.

NOTE:

The supplied screws used to install the sprue bushing are of a special quality and must not be substituted.

1. Clean the surfaces on the sprue bushing and manifold where the two components will interface.

![Figure 5-7: Sprue Bushing and Manifold Sealing Faces](image)

CAUTION!

Crushing hazard – risk of damage to equipment. Screws used to install sprue bushings must meet specific requirements. Only use the screws specified in the assembly drawings. Failure to use these screws may result in equipment damage.

2. Apply a high temperature anti-seize lubricant to the screws used to install the sprue bushing. Refer to Section 3.4 for information about recommended lubricants.

![Figure 5-8: Installing the Sprue Bushing](image)

1. Sprue Bushing
2. Screw

3. Install the sprue bushing and torque all screws to half the specified value in a cross pattern. Refer to the assembly drawings for torque requirements.

4. Torque the screws fully to the specified value to make sure an even seal is made between the sprue bushing and manifold. Refer to the assembly drawings for torque requirements.

5. Install the sprue heater. Refer to Section 5.5 for more information.

6. If equipped, install the center plate. Refer to Section 5.10.1 for more information.

7. Install the backing plate. Refer to Section 5.11.1 for more information.

5.5 Installing the Sprue Heater

The following procedures describe how to install a sprue heater with a built-in thermocouple or a separate thermocouple.

5.5.1 Installing a Sprue Heater with a Built-In Thermocouple

To install a sprue heater with a built-in thermocouple, do the following:

1. With the heater and thermocouple wires facing the manifold, slide the sprue heater onto the sprue bushing. Make sure the sprue heater is below the retaining clip groove in the sprue bushing.
Figure 5-9: Installing the Sprue Heater

2. Align the heater and thermocouple wires with the wire channels in the backing plate.
3. Install the retaining clip into the groove on the sprue bushing.
4. Pull the sprue heater up until it makes contact with the retaining clip.

NOTE:
All wiring near the sprue heater must be either a high temperature braid or sleeved using a high temperature sleeving.

5. Route the sprue heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.
 If the wire length is too long or too short, refer to Section 5.9 for information about adjusting the wire length.
6. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.
7. Crimp the wire ends and connect them to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.
8. Test the sprue heater. Refer to Section 5.8 for more information.
9. If a center plate is not equipped, install the backing plate. Refer to Section 5.11.1 for more information.

5.5.2 Installing a Sprue Heater with a Separate Thermocouple

To install a sprue heater with a separate thermocouple, do the following:

1. Slide the sprue heater onto the sprue bushing. Make sure the sprue heater is below the retaining clip groove in the sprue bushing.
Installing the Sprue Heater

Figure 5-10: Installing the Sprue Heater

2. Install the retaining clip into the groove on the sprue bushing.

3. Using a heater removal tool, pull the sprue heater up until it makes contact with the
 retaining clip. Refer to Section 1.8 for a list of special Husky tools and order numbers.

 NOTE:
 All wiring near the sprue heater must be either a high temperature braid or sleeved using a high
 temperature sleeving.

4. Connect the thermocouple to the sprue heater.

5. Route the sprue heater and thermocouple wires through the wire channels in the manifold
 plate. Make sure all wiring is properly retained in the wire channels using wire clips.

 If the wire length is too long or too short, refer to Section 5.9 for information about adjusting
 the wire length.

6. Thread the front ring onto the sprue heater and tighten by hand.

7. Label each wire with the heater zone number. Refer to the electrical schematic for the zone
 number.

8. Crimp the wire ends and connect them to the appropriate multi-pin connectors. Refer to the
 electrical schematic for more information.

9. Test the sprue heater. Refer to Section 5.8 for more information.

10. If a center plate is not equipped, install the backing plate. Refer to Section 5.11 for more
 information.
5.6 Installing Transfer Bushings (If Equipped)

The following procedures describe how to install transfer bushings.

5.6.1 Installing Transfer Bushings (If Equipped)

To Install a transfer bushing, do the following:

NOTE:
The supplied screws used to install the transfer bushing are of a special quality and must not be substituted.

1. Clean the surfaces on the transfer bushing and manifold where the two components will interface.

CAUTION!
Crushing hazard – risk of damage to equipment. Screws used to install transfer bushings must meet specific requirements. Only use the screws specified in the assembly drawings. Failure to use these screws may result in equipment damage.

2. Apply a high temperature anti-seize lubricant to the screws used to install the transfer bushing. Refer to Section 3.4 for information about recommended lubricants.
3. Install the transfer bushing and torque all screws to half the specified value in a cross pattern. Refer to the assembly drawings for torque requirements.

4. Torque the screws fully to the specified value to make sure an even seal is made between the transfer bushing and manifold. Refer to the assembly drawings for torque requirements.

5. Slide springs onto the transfer bushing.

6. Slide the transfer bushing heater onto the transfer bushing. Make sure the transfer bushing heater is below the retaining clip groove in the transfer bushing.

7. Snap the thermocouple ring onto the transfer bushing heater.

8. Install the retaining clip into the groove on the transfer bushing.

NOTE:

All wiring near the transfer bushing heater must be either a high temperature braid or sleeved using a high temperature sleeving.

9. Route the transfer bushing heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips. If the wire length is too long or too short, refer to Section 5.9 for information about adjusting the wire length.

10. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

11. Crimp the wire ends and connect them to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

12. Test the transfer bushing heater. Refer to Section 5.8 for more information.

13. Install the center plate. Refer to Section 5.10.1 for more information.

14. Install the transfer bushing cover plates.
15. Install the backing plate. Refer to Section 5.11.1 for more information.

5.7 Measuring Preload

Preload measurements from various sections of the hot runner must be taken and verified before the plates are assembled and when the hot runner is at room temperature (< 25 °C or < 77 °F). Damage to the plates, backup insulators and nozzle stacks could occur if the preload measurements are not within the allowed tolerance.

IMPORTANT!
Always measure preload in more than one section of the hot runner to make sure preload is consistent.

Maintaining proper preload will help prevent molten plastic from leaking inside the hot runner. Perform the following procedures as applicable to determine the preload on the manifolds and/or cross manifold (if equipped):

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Preload for Manifolds</td>
<td>Section 5.7.1</td>
</tr>
<tr>
<td>Measuring Preload for Cross Manifolds (If Equipped) in Two Plate System</td>
<td>Section 5.7.2</td>
</tr>
</tbody>
</table>

5.7.1 Measuring Preload for Manifolds

To measure the preload on a manifold, do the following:
CAUTION!

Mechanical hazard – risk of damage to the hot runner. Do not tighten the manifold or cross manifold hold down bolts to reduce the preload values. Manifold and cross manifold hold down bolts should be hand tightened and then turned counter-clockwise 1/4 turn before preload measurements are taken.

1. Determine the height of the backup insulators from the assembly drawings. Record the value as measurement A.

2. Using a depth micrometer, measure the distance from the top face of the manifold plate to the face of the manifold. Record this value as measurement B.

3. Complete the following calculation to determine the preload:

 \[A - B = \text{Preload} \]

4. Repeat step 1 to step 3 for all other corners of the cross manifold to make sure the preload measurements are consistent.

5. Compare the preload values to the C or C1 dimension values listed on the Tip Chart on the assembly drawings.

 If the measured preload is not within the tolerances given on the Tip Chart, check all measurements and review the assembly for obstructions or debris. Repeat step 1 to step 5 until the preload measurements are within tolerance.

5.7.2 Measuring Preload for Cross Manifolds in Two Plate Systems (If Equipped)

To measure the preload on a cross-manifold, do the following:

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Do not tighten the manifold or cross manifold hold down bolts to reduce the preload values. Manifold and cross manifold hold down bolts should be hand tightened and then turned counter-clockwise 1/4 turn before preload measurements are taken.
1. Using a depth micrometer, measure the distance from the top face of the cross manifold to the top face of the backup insulator. Record value as measurement A.

![Figure 5-15: Measurement A](image)

2. Make sure the backing plate is laying on a work bench with the pocket facing up.

3. Using a depth micrometer, measure the distance from the top face of the backing plate to the face inside the bore where the backup plate spring pack will make contact. Record value as measurement B.

![Figure 5-16: Measurement B](image)

4. Complete the following calculation to determine the preload:

 \[A - B = \text{Preload} \]

5. Repeat step 1 to step 4 for all other corners of the cross manifold to make sure the preload measurements are consistent.

6. Compare the preload measurements to the C2 dimension value listed on the Tip Chart on the assembly drawings.

 If the measured preload is not within the tolerances given on the Tip Chart, check all measurements and review the assembly for obstructions or debris. Repeat step 1 to step 6 until the preload measurements are within tolerance.
5.8 Testing Heaters

To confirm a heater is functioning properly, do the following:

1. With the heater at or near room temperature, use an ohmmeter to measure the resistance through the heater. Refer to the electrical schematic for the required ohms measurement. The normal tolerance for all heaters is ±15%.

IMPORTANT!

A common problem with heaters is moisture absorption due to the hygroscopic nature of the insulation. A heater with a low case to center conductor insulation reading (<10K Ω) should be baked out and retested to determine if moisture was the cause. Contact Husky for more information.

2. Using an ohmmeter, measure the resistance through each lead to ground. A measurement from either lead to ground that is below 100K Ω indicates a short to ground. A measurement from 100K Ω to 1M Ω is often associated with a wet heater. A measurement greater than 1M Ω is good.

NOTE:

A short reading can be the result of either a pinched wire or a broken heater element. Inspect the wires first to make sure there are no pinched or damaged lead wires. A heater wire can be spliced, however, this should only be done by a certified electrician. The splice should include dual layer heat shrink tubing with an adhesive inner layer to avoid potential water shorts. The heat shrink should be rated for 150 °C (203 °F) minimum.

NOTE:

Refer to the electrical schematics for resistance information.

5.9 Adjusting the Thermocouple Wire Length

In some cases, the length of a thermocouple wire may be too long or too short depending on the size of the hot runner. The following are recommendations for adjusting the wire length:

1. **Long Thermocouple Wires**

 For small hot runners where the lead length is greater than required, wrap the wires around the heater body to reduce slack and make sure the wires fit properly in the wire channel.
2. Short Thermocouple Wires

For large hot runners where the lead length is insufficient to reach a wire channel, cut and install a length of fiberglass sleeving to protect the wire.

5.10 Installing the Center Plate (If Equipped)

The following procedures describe how to install the center plate.

5.10.1 Installing the Center Plate (If Equipped)

To install the center plate, do the following:

NOTE:

The following procedure requires the use of an overhead lifting device. Refer to Section 4.1 for lifting and handling instructions.

1. Make sure the manifold plate and center plate are clean and free of pry marks around the pry slots.
2. Clean the center plate surface with a medium India stone (240 grit oilstone) as needed.
3. Measure the dimensions of the backup pad bore depth and verify them with those in the assembly drawings.
4. Apply a static application grease to the guide pins in the manifold plate. Refer to Section 3.4 for information about recommended lubricants.

WARNING!

 Crushing hazard – risk of death or serious injury. Inadequate lifting equipment can fail and cause death or serious injury. Make sure all lifting equipment is rated for the load and in safe operating condition.

5. Install hoist rings in the designated lifting points marked on the center plate.

6. Attach an overhead lifting device to the hoist rings and lift the center plate.
7. Slowly lower the center plate onto the manifold plate. Make sure the guide pins align with the center plate locating bores.
8. Disconnect the overhead lifting device and remove the hoist rings.
9. Install the screws that secure the center plate to the manifold plate. Torque the screws to the specified value starting from the center and working outwards in a cross pattern. Refer to the assembly drawings for torque requirements.
Figure 5-20: Installing the Center Plate Screws

1. Center Plate 2. Screw

Figure 5-21: Torque Sequence

10. Install the alignment dowels.

Figure 5-22: Installing the Alignment Dowels

1. Alignment Dowels

11. Install the backing plate. Refer to Section 5.11.1 for more information.
5.11 Installing the Backing Plate

The following procedure describes how to install the backing plate.

5.11.1 Installing the Backing Plate

To install the backing plate, do the following:

NOTE:
The following procedure requires the use of an overhead lifting device. Refer to Section 4.1 for lifting and handling instructions.

1. Make sure the backing plate and manifold plate are clean and free of pry marks around the pry slots.
2. Clean the backing plate and manifold plate mounting surfaces with a medium India stone (240 grit oilstone) as needed.

WARNING!
Crushing hazard – risk of death or serious injury. Inadequate lifting equipment could fail and cause death or serious injury. Make sure all lifting equipment is rated for the load and in safe operating condition.

3. Install hoist rings in the designated lifting points marked on the backing plate.
4. Attach an overhead lifting device to the hoist rings and lift the backing plate.
5. Slowly lower the backing plate onto the manifold plate. Make sure the guide pins align with the backing plate locating bores.

![Figure 5-23: Lowering the Backing Plate](image)

6. Disconnect the overhead lifting device and remove the hoist rings.
7. Install the screws that secure the backing plate to the manifold plate. Torque each screw to its specified value starting from the center and working outwards in a cross pattern. Refer to the assembly drawings for torque requirements.

![Figure 5-24: Installing the Backing Plate Screws](image)

1. Screw
2. Backing Plate

![Figure 5-25: Torque Sequence](image)

8. If the backing plate has wire grooves, do the following:
 a. Secure all wires and thermocouples routed through the backing plate into the wire grooves.
 b. Connect the wires and thermocouples to the multi-pin connectors.

9. If equipped, install the insulator board and torque the screws to the specified value. Refer to the assembly drawings for torque requirements.
10. Install the locating ring.

5.12 Installing Nozzle Tips

The following procedures describe how to install nozzle tips.

NOTE:
Refer to Section 5.13.1 regarding special requirements for Ultra 250 Systems as the heater must be installed prior to the nozzle tip.

5.12.1 Installing the Nozzle Tips

To install a nozzle tip, do the following:
NOTE:
Nozzle tips must be installed when the resin and nozzle housings are cold.

1. Lock out and tag the machine and controller (if equipped). Refer to Section 2.5 for more information.

IMPORTANT!
If resin or other residues are not thoroughly cleaned off the threads and seating areas of both the nozzle tip and nozzle housing, the result could lead to the following:

- Compressive overload of the tip, even at the correct torque recommendation, causing damage to the tip (permanently shortened)
- A tip which is no longer tight after it has been heated up and cooled down
- Poor performance or quality of the gate due to the incorrect tip position (too far back or too far forward)
- Leakage between the nozzle tip and cavity plate gate detail, permitting the formation of degraded resin
- Thread stripping

2. Remove any resin or other residue found on the nozzle tips and nozzle housings.
3. If the nozzle housing has an external thread, proceed to step 4. Otherwise, clean the nozzle tip seating surface at the bottom of the nozzle housing bore with a soft wire brush.
4. Make sure the nozzle tip and nozzle housing are clean and dry.
5. Using a nozzle tip socket, install the nozzle tip and torque it to the value printed on the nozzle tip. Refer to Section 1.8 for a list of available nozzle tip sockets.

6. Install the nozzle heater. Refer to Section 5.13 for more information.
7. Measure the height of the nozzle tip using a depth micrometer and compare the measurement to the tip height listed on the Tip Chart in the assembly drawings.

If the nozzle tip height is outside the tolerances listed on the Tip Chart, refer to Section 5.12.2.
8. Remove all locks and tags. Refer to Section 2.5 for more information.
9. Install the cavity plate. Refer to Section 5.14 for more information.

5.12.2 Troubleshooting Nozzle Tip Heights

The following describes reasons and corrective action for nozzle heights that are less or more than the values listed on the Tip Chart.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Action</th>
</tr>
</thead>
</table>
| Dimension is shorter than required tip height | Nozzle tip has been overtightened, worn, or damaged | 1. Remove the nozzle tip
2. Clean resin from the nozzle tip and nozzle housing
3. Replace or install new nozzle tip |
| Dimension is longer than required tip height | Nozzle tip is damaged
OR
Nozzle tip is being prevented from seating in the nozzle housing by resin under the nozzle tip seating surface. | 1. Remove the nozzle tip
2. Clean resin from the nozzle tip and nozzle housing
3. Re-apply the torque to the nozzle tip
4. Verify the nozzle tip height |

5.13 Installing Nozzle Heaters and Nozzle Tip Insulators

The following procedures describe how to install nozzle heaters and nozzle tip insulators. The following types of nozzle heaters are supported:

- HTM heaters for U250 systems
- HTM heaters for U350, U500 and U750 systems
- HTM heaters for U1000 systems
- Copper heaters for U500 systems
- Ultra Nozzle Heaters (UNH) with front rings for U500 and U750 systems
- Ultra Nozzle Heaters (UNH) with ring thermocouples for U500 and U750 systems
- Bi-metal heaters for U750 and U1000 systems
- Triton heaters for U750-UP systems

IMPORTANT!

Husky nozzle heaters are rugged and have a long service life. Only replace nozzle heaters with Husky approved parts. Use of components not sold or approved by Husky will void the hot runner warranty.

5.13.1 Installing HTM Heaters for U250 Systems

To install an HTM nozzle heater for U250 systems, do the following:

NOTE:

The nozzle heater assembly includes the retaining sleeve, nozzle heater and thermocouple.

1. Slide the nozzle heater assembly over the nozzle housing.

 ![Figure 5-30: HTM Nozzle Heater Assembly](image)

 1. Nozzle Tip
 2. HTM Nozzle Heater

2. Install the nozzle tip. Refer to Section 5.12 for more information.
3. Raise the nozzle heater assembly up until it contacts the hex section of the nozzle tip and tighten the set screw.
4. Torque the set screw to the value specified on the assembly drawing.
5. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.
6. Make sure to stagger the knuckles in the wire grooves.
Figure 5-31: Staggering the Knuckles in the Wire Grooves

NOTE:

All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.

7. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

8. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

9. Test each nozzle heater. Refer to Section 5.8 for more information.

5.13.2 Installing HTM Nozzle Heaters for U350, U500 and U750 Systems

To install an HTM nozzle heater for U350, U500 and U750 systems, do the following:

1. Install new wave springs over the nozzle housing and nozzle tip.

2. Slide the nozzle heater assembly over the nozzle housing far enough to show the retaining clip groove on the nozzle tip.

3. Install the retaining clip on the nozzle tip and pull the nozzle heater assembly up against it.

4. Install the set screw, if applicable.
5. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.

6. Make sure to stagger the knuckles in the wire grooves.

Figure 5-33: Staggering the Knuckles in the Wire Grooves

NOTE:

All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.

7. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

8. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

9. Test each nozzle heater. Refer to Section 5.8 for more information.

10. Install the cavity plate. Refer to Section 5.14 for more information.

5.13.3 Installing HTM Nozzle Heaters for U1000 Systems

To install an HTM heater for a U1000 system, do the following:

1. Install new wave springs over the nozzle housing and nozzle tip.
2. Slide the nozzle heater assembly over the nozzle housing.
3. With the tip of the thermocouple pointed down, insert the thermocouple into one of the thermocouple probe holes. If required, insert a second thermocouple into the other hole.
4. Install the thermocouple retaining clip on the nozzle heater.
5. Install the retaining clip on the nozzle tip.
6. Bend the thermocouple so it is tight to the heater body.
7. Install the retaining sleeve over the nozzle heater and thermocouple, if applicable.
8. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.
9. Pull the heater away from the retaining clip and release it. Make sure the heater moves back into place and contacts the retaining clip.
10. Make sure to stagger the knuckles in the wire grooves.

NOTE:
All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.
11. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

12. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

13. Test each nozzle heater. Refer to Section 5.8 for more information.

14. Install the cavity plate. Refer to Section 5.14 for more information.

5.13.4 Installing Copper Nozzle Heaters

To install a copper nozzle heater, do the following:

1. Slide the nozzle heater over the nozzle housing and nozzle tip.

![Figure 5-36: Copper Nozzle Heater Assembly](image)

2. Install the retaining clip around the nozzle tip.

3. Connect the thermocouple to the nozzle heater.

4. Pull the nozzle heater up against the retaining clip.

5. If equipped, install the retaining sleeve over the nozzle heater and thermocouple.

6. Install the front ring and tighten by hand.

7. Route the nozzle heater and thermocouple wires through the wire grooves in the manifold plate. Make sure all wiring is properly retained in the wire grooves using wire clips.

8. Make sure to stagger the knuckles in the wire grooves.

![Figure 5-37: Staggering the Knuckles in the Wire Grooves](image)
NOTE:
All wiring along the nozzle heater must be either a high temperature braid or sleeved using a high temperature sleeving.

9. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

10. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

11. Test each nozzle heater zone. Refer to Section 5.8 for more information.

5.13.5 Installing Ultra Nozzle Heaters (UNH) with Front Rings

To install an Ultra Nozzle Heater (UNH) with a front ring, do the following:

1. Slide the nozzle heater over the nozzle housing and nozzle tip.

2. Install the retaining clip around the nozzle tip.

3. Connect the thermocouple to the nozzle heater.

4. Pull the nozzle heater up against the retaining clip.

5. Install the front ring and tighten by hand.

CAUTION!
Mechanical hazard – risk of damage to the hot runner. Do not bend the nozzle heater wires at a 90° angle. Do not bend the nozzle heater wires directly at the lead exit of the heater body. The wires will crack or break over time.

6. On the U750 heaters, bend the nozzle heater wires in an arc against the heater body. Make sure each bend has a minimum 10 mm (0.4 in) radius.
7. On U500 heaters, first bend the leads along the curvature of the heater, and then bend them up or down (away from the lead exit of the heater body) to meet the manifold plate wire groove as required.

8. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.

9. Make sure to stagger the knuckles in the wire grooves.

Figure 5-39: Ultra Nozzle Heater - U750

Figure 5-40: Ultra Nozzle Heater - U500
1. Heater leads before bending 2. Heater leads after bending

Figure 5-41: Staggering the Knuckles in the Wire Grooves
NOTE:
All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high-temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high-temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.

10. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.
11. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.
12. Test each nozzle heater. Refer to Section 5.8 for more information.

5.13.6 Installing Ultra Nozzle Heaters (UNH) With Ring Thermocouples

To install an Ultra Nozzle Heater (UNH) a ring thermocouple, do the following:

1. Install new wave springs over the nozzle housing and nozzle tip.

2. Slide the nozzle heater over the nozzle housing far enough to show the retaining clip groove on the nozzle tip.

3. Slide the ring thermocouple over the nozzle tip, on to the nozzle heater, far enough to show the retaining clip groove on the nozzle tip.

4. Install the retaining clip on the nozzle tip and pull the nozzle heater and ring thermocouple up against it.
CAUTION!

Mechanical hazard – risk of damage to the hot runner. Do not bend the nozzle heater wires at a 90° angle. Do not bend the nozzle heater wires directly at the lead exit of the heater body. The wires will crack or break over time.

5. On U750 heaters, bend the nozzle heater wires in an arc against the heater body. Make sure each bend has a minimum 10 mm (0.4 in) radius.

6. On U500 heaters, first bend the leads along the curvature of the heater, and then bend them up or down (away from the lead exit of the heater body) to meet the manifold plate wire groove as required.

7. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.

8. Make sure to stagger the knuckles in the wire grooves.
NOTE:
All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.

9. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.
10. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.
11. Test each nozzle heater. Refer to Section 5.8 for more information.
12. Remove all locks and tags. Refer to Section 2.5 for more information.

5.13.7 Installing Bi-Metal Heaters for U750 and U1000 Systems

To install a bi-metal heater, do the following:

1. Slide the nozzle heater over the nozzle housing and nozzle tip.
2. Install the retaining clip around the nozzle tip.
3. Connect the thermocouple to the nozzle heater.
4. Pull the nozzle heater up against the retaining clip.
5. Install the front ring and tighten by hand.
6. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.
7. Make sure to stagger the knuckles in the wire grooves.

![Figure 5-47: Staggering the Knuckles in the Wire Grooves](image)

NOTE:

All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.

8. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.
9. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.
10. Test each nozzle heater. Refer to Section 5.8 for more information.

5.13.8 Installing Triton Heaters

To install a Triton heater, do the following:

1. Slide the wave springs over the nozzle housing and nozzle tip. Refer to the assembly drawings to determine the number of wave springs required.

![Figure 5-48: Triton Heater Assembly](image)

2. Slide the nozzle heater over the nozzle housing and nozzle tip.
3. Install the thermocouple and retaining clip over the nozzle heater.
4. Orient the thermocouple wires on the same side as the nozzle heater wires.
5. While holding the retaining clip and nozzle heater firmly against the wave springs, install the retaining clip in the groove in the nozzle tip.

6. Route the nozzle heater and thermocouple wires through the wire channels in the manifold plate. Make sure all wiring is properly retained in the wire channels using wire clips.

7. Make sure to stagger the knuckles in the wire grooves.

![Figure 5-49: Staggering the Knuckles in the Wire Grooves](image)

NOTE:

All wire, including heater or thermocouple wire, that could contact a heated component such as a nozzle housing or manifold must be mineral insulated high temperature wire (hard lead). If the mineral insulated lead is not long enough to allow this, additional steps must be taken, such as using high temperature sleeving, to prevent the knuckles and PTFE or Kapton insulated wire (soft lead) from overheating.

8. Label each wire with the heater zone number. Refer to the electrical schematic for the zone number.

9. Crimp the wire ends and connect the wires to the appropriate multi-pin connectors. Refer to the electrical schematic for more information.

10. Test each nozzle heater. Refer to Section 5.8 for more information.

11. Remove all locks and tags. Refer to Section 2.5 for more information.

5.13.9 Installing Nozzle Tip Insulators

To install nozzle tip insulators, do the following:

IMPORTANT!

Due to geometric variations between the gate details and the witness marks left in the nozzle tip insulators by the nozzle tips, Husky does not recommend reusing nozzle tip insulators. Previously used nozzle tip insulators should always be replaced with new nozzle tip insulators. If reuse is absolutely necessary (For example, unscheduled maintenance with no spares on hand), order new nozzle tip insulators and replace as soon as possible. Contact your nearest Husky Regional Service and Sales Office or www.husky.co.

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Make sure all nozzle tip insulators are clean before they are installed. Any additional material on the nozzle tip insulator will increase the calculated preload and damage the hot runner during assembly with the cavity plate.
1. Make sure the hot runner is either installed in the machine or laying on a work bench with the nozzle tips facing up.
2. Make sure all nozzle tip insulators are clean and in good condition.

CAUTION!

Mechanical hazard – risk of damage to the hot runner. Due to geometric variations between the gate details and the witness marks left in nozzle tip insulators by the nozzle tips, Husky does not recommend reusing nozzle tip insulators. Previously used nozzle tip insulators should always be replaced with new nozzle tip insulators whenever possible.

3. Place a nozzle tip insulator on each nozzle tip. If used nozzle tip insulators are being installed, make sure they are installed on the same nozzle tip as previously removed and in the same orientation.

4. Install the cavity plate. Refer to Section 5.14 for more information.

5.14 Installing the Cavity Plate

The following procedures describe how to install the cavity plate.

5.14.1 Installing the Cavity Plate On a Work Bench

To secure the cavity plate to the hot runner when the assembly is on a work bench, do the following:

NOTE:

The following procedure assumes the cavity plate was removed as described in the applicable Service Manual.
NOTE:
The following procedure requires the use of an overhead lifting device. Refer to Section 4.1 for
lifting and handling instructions.

CAUTION!
Mechanical hazard – risk of damage to the hot runner. Make sure all valve stems are in the
still in the open position prior to installation.

1. Make sure the hot runner is on a work bench with the nozzle tips facing up. The hot runner
must be supported by two blocks.
2. Make sure the nozzle and cavity plate sealing diameters are clean and free of burrs or oil.

Figure 5-51: Cavity and Nozzle Sealing Diameters
Housing 5. Manifold Plate

3. Apply a static application grease to the hot runner alignment dowels. Refer to Section 3.4 for
information about recommended lubricants.
4. If equipped, install a nozzle tip insulator on each nozzle tip. Refer to Section 5.13.9 for more
information.

WARNING!
Crushing hazard – risk of death or serious injury. Inadequate lifting equipment can fail and
cause death or serious injury. Make sure all lifting equipment is rated for the load and in
safe operating condition.

5. Install hoist rings in the designated lifting points marked on the cavity plate.
6. Attach an overhead lifting device to the hoist rings and lift the cavity plate over the hot
runner.
IMPORTANT!
When assembling the cavity plate to the hot runner, special attention should be given to preventing damage to the nozzle tips, valve stems and wires. The cavity plate should mate with the hot runner without any resistance. If resistance is encountered, remove the plate and check for any interference points.

CAUTION!
Mechanical hazard – risk of damage to equipment. Do not force the plate into position as serious damage to the nozzle tips, valve stems and wires can result.

CAUTION!
Mechanical hazard – risk of damage to the mold and hot runner. The nozzles and manifold must be at room temperature (< 25 °C or < 77 °F) before the cavity plate is connected to the hot runner. Severe damage to the nozzle and cavity plate sealing diameters can result if the mold is still hot.

7. Align the cavity plate with the alignment dowels and lower the plate onto the hot runner. Make sure the wires in the wire channels are not pinched between the plates while closing.
8. Disconnect the overhead lifting device and remove the hoist rings.
9. Remove the feet from the bottom of the cavity plate.
10. Install safety latch bars between the cavity plate and hot runner on both sides of the assembly. A minimum of two safety latch bars are required.
11. Install the screws that secure the cavity plate to the hot runner and torque them to the specified value. Refer to the manufacturer’s documentation for torque requirements.
12. Check the electrical circuit with an ohmmeter to make sure no wires were damaged during installation. Refer to the electrical schematic to identify each zone.

5.14.2 Installing the Cavity Plate In the Machine

To secure the cavity plate to the hot runner when the assembly is in the machine, do the following:

NOTE:
The following procedure assumes the cavity plate was removed as described in the applicable Service Manual.

1. Lock out and tag the machine and controller (if equipped). Refer to Section 2.5 for more information.
2. Make sure the nozzle and cavity plate sealing diameters are clean and free of burrs or oil.
3. Apply a static application grease to the hot runner alignment dowels. Refer to Section 3.4 for information about recommended lubricants.

4. If equipped, install the nozzle tip insulators. Refer to Section 5.13.9 for more information.

5. Remove all locks and tags. Refer to Section 2.5 for more information.

6. Reduce the clamp opening and closing speed.

CAUTION!

Mechanical hazard – risk of damage to the mold and hot runner. The nozzles and manifold must be at room temperature (< 25 °C or < 77 °F) before the cavity plate is connected to the hot runner. Severe damage to the nozzle and cavity plate sealing diameters can result if the mold is still hot.

7. Slowly close the clamp to move the cavity plate into position. Make sure the wires in the wire channels are not pinched between the plates while closing.

8. Lock out and tag the machine and controller (if equipped). Refer to Section 2.5 for more information.

9. Remove all safety latch bars.

10. Install safety latch bars between the cavity plate and hot runner on both sides of the assembly. A minimum of two safety latch bars are required.
Figure 5-53: Latching the Cavity Plate to the Hot Runner (Overhead View)

1. Safety Latch Bar

11. Remove all locks and tags. Refer to Section 2.5 for more information.
12. Reduce the clamp opening and closing speed.
13. Slowly open the clamp to move the cavity plate away from the core plate.
14. Lock out and tag the machine and controller (if equipped). Refer to Section 2.5 for more information.
15. Install the screws that secure the cavity plate to the hot runner and torque them to the specified value. Refer to the manufacturer's documentation for torque requirements.
16. Remove all safety latch bars.
17. Check the electrical circuit with an ohmmeter to make sure no wires were damaged during installation. Refer to the electrical schematic to identify each zone.