Plate Design for Husky Manifold Systems
Table of Contents

How to Use This Guide .. 3

Design package ... 4

Nomenclature .. 5

General Recommendations .. 7

Installing Manifold Pocket in Plates 8

Plate Bolts .. 9

Mold Interfaces .. 10

Backer Plate Cooling .. 11

Manifold Plate Cooling .. 12

Air Lines (if Valve Gate) ... 13

Cylinder Installation Details ... 14

Hot Runner Plate Alignment ... 15

Wire Channels and Electrical .. 16

Pry Slots and Drainage ... 21

Lift Taps and Platen Mounting 22

Nameplate .. 23

Tolerance References .. 24

UNIFY Specific Requirements 28

Questions .. 29
How to Use This Guide

This guide is designed to help a mold maker integrate a Husky Manifold System into their plate and mold design. The guide is broken into three main sections:

1.) Nomenclature used with Husky Manifold Systems
2.) General Recommendations
3.) Plate design steps which include adding:
 - Manifold pocket
 - Plate bolts
 - Guide pins and cavity plate interface taps
 - Hot runner plate alignment dowels
 - Plate cooling
 - Air lines (if valve gate)
 - Wire channels and electrical
 - Pry slots and drainage
 - Lift taps and platen mounting
 - Nameplate
Design Package

The following design items are provided by Husky with all manifold systems

3D Models

Pocket Inverse Manifold Assembly Gate Detail Inverse

2D Print Package

• Plate Installations
• Assembly Electrical
• Gate Detail
Nomenclature

Supplied by Husky

Optional item for order:
- Locating Ring

Standard:
- Manifold
- Complete Nozzle Assemblies
- Nameplate
- Design Package

Optional items for order:
- Electrical adaptor box
- Electrical Connectors and Wire Clamps

3D Pocket Geometry

Manifold Pocket

Manifold Hold
Down Tap

Nozzle Bore

Center Locating
Insulator Installation

Thermocouple
Clearance Bore

Manifold Alignment
Dowel Installation

Locating Ring
Installation
The remainder of this guide assumes “Husky Standard” installation. However, the basic steps are unchanged regardless of plate split option. Husky calculates and accounts for thermal expansion in manifold and nozzle design.

BL-dimension is to the bottom of the nozzle locating bore.
General Recommendations

Plate Steel
Stainless steel is the recommended material for plate manufacture. Recommended plate material properties:

- Minimum Yield Strength 640 Mpa
- Hardness 24-36 HRC

Examples of suitable steels types are listed below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Hardness (HRC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 4140</td>
<td>30-35 HRC</td>
</tr>
<tr>
<td>AISI P20</td>
<td>30-35 HRC</td>
</tr>
<tr>
<td>AISI 420</td>
<td>30-35 HRC</td>
</tr>
<tr>
<td>DIN 1.2316</td>
<td>30-35 HRC</td>
</tr>
</tbody>
</table>

Manifold Pocket
Husky recommends machining a pocket into the manifold plate for the manifold. The 3D model provided by Husky includes all necessary geometry. A pocket profiled to match the manifold:

- Allows close positioning of the plate bolts to the nozzle components, minimizing plate deflection
- Provides superior structural support for the mold and cavities
- Maintains a consistent air gap between the manifold and manifold pocket to thermally insulate the manifold from the surrounding plates

Cavity Numbering
Clear nozzle identification is necessary to ensure the hot runner properly interfaces with the mold and that the nozzles are mapped correctly.
Installing Manifold Pocket in Plates

Step 1 - Adjust Plate Thicknesses

Step 2 - Subtract Pocket Inverse from Plates
Add Plate Bolts

Why good plate bolting is important

The function of the plate bolts is to resist plate separation forces generated under normal operation. If the forces are not balanced, they can bend (or “bow”) the plates which in certain situations can cause:

- Premature wear of tightly-toleranced mold and hot runner components
- Leakage in manifold pocket
- Part flash

Step 1- Determine Bolt Size

<table>
<thead>
<tr>
<th>Nozzle Size (Refer to Hot Runner Description)</th>
<th>Quantity x Size (minimums)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 250</td>
<td>2xM12 or 1/2”</td>
</tr>
<tr>
<td>Ultra 350</td>
<td>2xM12 or 1/2”</td>
</tr>
<tr>
<td>Ultra 500</td>
<td>2xM12 or 1/2”</td>
</tr>
<tr>
<td>Ultra 750</td>
<td>2xM16 or 5/8”</td>
</tr>
<tr>
<td>Ultra 750 and Injection Pressure >26K psi [1793 bar]</td>
<td>3xM16 or 5/8”</td>
</tr>
<tr>
<td>Ultra Packaging (UP)</td>
<td>2xM16 or 5/8”</td>
</tr>
<tr>
<td>U1000</td>
<td>3xM16 or 5/8”</td>
</tr>
<tr>
<td>U1250</td>
<td>4xM20 or 3/4”</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Around Center Insulator</td>
<td>4xM16 or 5/8”</td>
</tr>
<tr>
<td>Cross Manifold Spring Pack</td>
<td>4xM20 or 3/4”</td>
</tr>
</tbody>
</table>

Step 2- Position Bolts

- 2 Bolts 180° Apart
- 3 Bolts (Preferred) Force Triangle
- 4 Bolts Surrounding
Add Mold Interfaces

Step 1- Add Guide Pin Installations

Guide pins align the hot runner manifold plate to the cavity plate and protect nozzle tips during lifting and handling (if hot runner built “hot half” style). Husky recommends guide pin protrusion greater than or equal to 5mm [0.19"] longer than the nozzle length in order to protect the tips.

Step 2- Add Cavity Plate Interface Taps

Interface taps secure the cavity plate to the hot runner manifold plate.
Add Backing Plate Cooling

Plate cooling circuits maintain a uniform mold plate temperature and match thermal expansion of the mold plates. To design a uniformly cooled mold, consideration must be given to the cooling circuit layout, number of channels, lengths, and diameters. Apply cooling to all drops.

Sample Layouts

Thermal Gate Examples
- 2-Drop Thermal Gate
- 8-Drop Thermal Gate

Valve Gate Examples
- 8-Drop Valve Gate
- 16-Drop Valve Gate

Thermal Gate
- View from Injection Side
- Acceptable Locations
 - 5-10mm [0.20-0.39]
 - 5-7mm [0.20-0.28]
 - 5-mm MIN [0.20]

Valve Gate
- Section A-A
- IMPORTANT Cooling lines should remain close to the contact area of the drop backup pad
- EMI Valve Gate
 - 5-7mm [0.20-0.28]
 - Ø 6.0-6.5mm [Ø 0.24-0.26]
 - 5mm [0.20]

For best results, apply cooling in the green region shown above.
Add Manifold Plate Cooling

Plate cooling circuits maintain a uniform mold plate temperature and match thermal expansion of the mold plates. To design a uniformly cooled mold, consideration must be given to the cooling circuit layout, number of channels, lengths, and diameters. Apply cooling to all drops.

Sample Layouts

- 2-Drop
- 4-Drop
- 8-Drop
- 16-Drop

Thermal Gate

Valve Gate

View from Injection Side

Section A-A
Add Air Lines (if Valve Gate)

Step 1- Add Air Lines for VG Open and Close

A maximum of 36 drops can be on one circuit. Use a balanced design wherever possible (same distance to each piston)

Air fittings on the Hot Runner should have an internal diameter of no smaller than 9.525mm [3/8"] and no larger than 15.875mm [5/8”]

Husky recommends using Quick Disconnect from:
- DME, part number JP-353
- Hasco, part number Z81/19/24x1.5
Cylinder Installation Details

Refer to 3D model for complete geometry

<table>
<thead>
<tr>
<th>SX Cylinders</th>
<th>LX, EX and Ultra 1000 Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMI Cylinders

![Diagram](image7.png)

Refer to 3D model for complete geometry

CAN MOVE LOCATION OF AIR LINES AS LONG AS CONNECTED TO CYLINDER LINES AND MINIMUM CLEARANCES RESPECTED
Add Hot Runner Plate Alignment

The alignment dowel provides precise alignment between the manifold plate and the backing plate. In doing so, the following are maintained:

- Clearance fit between the sprue bushing and locating ring.
- Alignment between the sprue bushing and the machine nozzle (via the locating ring).
- In Valve Gate systems, alignment between valve gate piston cylinders and air open/close holes in the backing plate.

Step 1- Add dowel installation to manifold plate
Husky recommends press fit installation in manifold plate

Step 2- Add dowel installation to backing plate
Husky recommends locational fit installation in backing plate

Alignment must be within 0.010mm [0.0005in] Total Indicator Run out (T.I.R.)
Add Wire Channels and Electrical

Power and thermocouple wires are typically routed to the electrical connectors within wire grooves, providing the following benefits:

- Protect the machine operator from live wires
- Provide orderly routing of hot runner wires
- Prevent potential wire damage

Step 1- Determine Wire Groove Depth

<table>
<thead>
<tr>
<th>Number of Heaters and Thermocouples (Nozzle and Manifold)*</th>
<th>Recommended Groove Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td><=12</td>
<td>11mm</td>
</tr>
<tr>
<td>13-24</td>
<td>18mm</td>
</tr>
<tr>
<td>25-32</td>
<td>23mm</td>
</tr>
</tbody>
</table>

*Number of heaters and TCs, not the number of wires

Step 2- Add Electrical Connectors

Sheet Metal Adapter Box

Machined Adaptor Box

(Husky can supply this box-Just ask!**)

Direct Mounted
Add Wire Channels and Electrical

If plate split design is Husky Standard, the following wire routing is recommended

Step 3a - Route Wires for Nozzles and any Manifold TCs on Clamp Face of Manifold Plate

Step 4a - Route Wires for Manifold Heaters, Manifold TCs, Sprue Heater, and Sprue TC on Injection Face of Manifold Plate
Add Wire Channels and Electrical

If integrated cavity and manifold plate, the following wire routing is recommended.

Note: This method is not suitable for Ultra 250, Ultra 350 and Ultra 500 high pressure systems

Step 3b - Route Wires for Nozzles and any Manifold TCs on Injection Face of Manifold Plate

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>A</th>
<th>Bmax</th>
<th>Cmax</th>
<th>D*max</th>
</tr>
</thead>
<tbody>
<tr>
<td>U500</td>
<td>25.4mm</td>
<td>12.7mm</td>
<td>8mm</td>
<td>8mm</td>
</tr>
<tr>
<td></td>
<td>[1.0"]</td>
<td>[0.5"]</td>
<td>[0.31"]</td>
<td>[0.31"]</td>
</tr>
<tr>
<td>U750</td>
<td>25.4mm</td>
<td>16mm</td>
<td>12.7mm</td>
<td>12.7mm</td>
</tr>
<tr>
<td></td>
<td>[1.0"]</td>
<td>[0.63"]</td>
<td>[0.5"]</td>
<td>[0.5"]</td>
</tr>
<tr>
<td>U1000</td>
<td>25.4mm</td>
<td>16mm</td>
<td>12.7mm</td>
<td>12.7mm</td>
</tr>
<tr>
<td></td>
<td>[1.0"]</td>
<td>[0.63"]</td>
<td>[0.5"]</td>
<td>[0.5"]</td>
</tr>
</tbody>
</table>

*This feature is for condensation drainage from the nozzle bore

8mm [0.31"] min clearance for wires

Add tap and wire clamp
Add Wire Channels and Electrical

If integrated cavity and manifold plate, the following wire routing is recommended.

Step 4b - Route Wires for Manifold Heaters and any Manifold TCs on Injection Face of Manifold Plate

Step 5a – Add Wire Clip Installations (if using Wire Clamps see Step 5b)
Note: Wire clips are available from Husky

<table>
<thead>
<tr>
<th>B</th>
<th>C +/-0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.7</td>
<td>12.7</td>
</tr>
<tr>
<td>21.1</td>
<td>19.05</td>
</tr>
<tr>
<td>27.4</td>
<td>25.4</td>
</tr>
<tr>
<td>40.1</td>
<td>38.1</td>
</tr>
</tbody>
</table>
Add Wire Channels and Electrical

Step 5b – Add Wire Clamp Installations (if using Wire Clips see Step 5a)

Clamps should be positioned as close to the nozzle as possible and at every bend and/or interval of 120mm [4.7”]

Wire clamps for 25.4mm [1.0”] wire groves are available for Husky Manifold Systems (Suggested quantity: 40 or 2 times the number of drops, whichever is greater)
Add Pry Slots and Drainage

Step 1- Add Pry Slots

Pry slots allow easier separation of the plates. Position pry slots between all plate interfaces, near plate alignment features (guide pins, alignment dowels)

Step 2- Add Drainage Slots

Drain slots (also referred to as condensation slots) allow any water which condenses on the cooled plates to drain out of the hot runner. Add these slots anywhere water can pool when the tool is oriented for production - bottom of manifold pocket and wire grooves.
Add Lift Taps and Platen Mounting

Step 1- Add Lift Taps
Add sufficient lift taps for handling individual plates as well as the assembly

Step 2- Add Platen Mounting
Platen mounting can either be clamp slots or direct bolting though an overhanging backing plate or cutouts
Add Nameplate Installation

SECTION A-A

R 13 ±0.5

[.5 ±.02]

4X

59 ±0.2

[1.232 ±0.008]

122 ±0.2

[4.80 ±0.008]

13 ±0.5

[1.5 ±0.02]

1.5 ±0.2

[1.06 ±0.008]

SECTION A-A
Tolerance Reference
Refer to 3D model for complete geometry
Center Locating Insulator

<table>
<thead>
<tr>
<th>Insulator Type</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Pitch</td>
<td>32.01mm</td>
<td>20mm</td>
</tr>
<tr>
<td></td>
<td>[1.26"]</td>
<td>[0.78"]</td>
</tr>
<tr>
<td>Standard Pitch</td>
<td>44.01mm</td>
<td>30mm</td>
</tr>
<tr>
<td></td>
<td>[1.73"]</td>
<td>[1.29"]</td>
</tr>
<tr>
<td>Large Pitch</td>
<td>64.01mm</td>
<td>50mm</td>
</tr>
<tr>
<td></td>
<td>[2.52"]</td>
<td>[1.96"]</td>
</tr>
</tbody>
</table>
Tolerance Reference
Refer to 3D model for complete geometry
Center Locating Insulator

UNIFY Specific Requirements
Locating Ring - Sprue Bushing Clearances

Husky recommends the diametrical clearance between the locating ring and sprue bushing to be 0.45 +0.10/-0.03 mm. Locating ring to Sprue Heater clearances should follow the table below.

<table>
<thead>
<tr>
<th>LOCATING RING / SPRUE HEATER CLEARANCE</th>
<th>MINIMUM CLEARANCE (LENGTH-DEPENDENT) IN COLD CONDITION (mm)</th>
<th>MINIMUM DIAMETRICAL CLEARANCE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRUE BUSHING LENGTH (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 80</td>
<td>1.75</td>
<td>3.00</td>
</tr>
<tr>
<td>81-200</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>201-300</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>>300</td>
<td>3.00</td>
<td></td>
</tr>
</tbody>
</table>

Husky Recommendations

1. **Diametrical Clearance**: 0.45 +0.10/-0.03 mm
2. **Length Dependent Clearances**
 - 1.75 mm for lengths < 80 mm
 - 2.25 mm for 81-200 mm
 - 2.75 mm for 201-300 mm
 - 3.00 mm for >300 mm

Notes

- **Reference to 3D Model**: For complete geometry and dimensions.
- **Tolerance Reference**: Refer to 3D model for nominal dimensions.
- **Thread Clearances**: 2X M6 x 1.0 6H for metric threads or 1/4-20 UNC for imperial threads.
- **Clearance Dimensions**:
 - Diameter: 7.1 ±0.1, 2.799 ±0.004
 - Radius: 0.8 ±0.2
 - Perpendicularity: 0.5 ±0.5
 - 2X M6 - 1.0 6H 12 DP MIN FULL THD OR 1/4-20 UNC 0.5 DP MIN FULL THD

Diagram Notes

- **Locating Ring**: The locating ring is installed to align the sprue bushing and sprue heater.
- **Sprue Bushing**: The sprue bushing plays a critical role in guiding the molten plastic flow.
- **Sprue Heater**: The sprue heater maintains the temperature of the sprue bushing to ensure a consistent flow.
- **Retaining Ring**: Ensures the locating ring is securely placed in its position.

Key Dimensions

- Diameter: 7.1 ±0.1
- Radius: 0.8 ±0.2
- Perpendicularity: 0.5 ±0.5

Thread Details

- Metric: 2X M6 x 1.0 6H 12 DP MIN FULL THD
- Imperial: 1/4-20 UNC 0.5 DP MIN FULL THD
Tolerance Reference

Refer to 3D model for complete geometry

Manifold Alignment Dowel

\[\varnothing \pm 0.2 \]
\[[\pm 0.008] \]

Manifold Thermocouple Thru Hole

\[\varnothing 22 [0.87] THRU MIN \]
\[\varnothing 25.4 [1.00] THRU PREFERRED \]

Backup Pad Installation

Only required on select designs – refer to 3D model sent with project information to determine if required

M6 x 1.0 6H
\[[\frac{1}{4}-20 \text{ UNC 2B}] \]

LOCATION (X AND Y) \[\pm 0.1 [\pm 0.004] \]
UNIFY Specific Requirements

UNIFY simplifies integration into the mold design. Use this same guide, but only these steps:

1.) Install manifold pocket into plates
2.) Mold interfaces
3.) Manifold plate cooling
4.) Hot Runner plate alignment
5.) Plate bolts (Unique to UNIFY, see requirements below)
6.) Pry slots and drainage
7.) Lift taps and platen mounting
8.) Nameplate

The following are NOT required for UNIFY:
- Backing plate cooling
- Air lines in backing plate
- Air cylinder installation
- Wire channels

UNIFY Plate Bolting:

Plate bolts on UNIFY Manifold Systems connect the backing plate to the manifold plate for adequate support when clamped to the machine platen. These bolts do not influence any sealing connections in the manifold. Add sufficient bolts per your mold design practices.
Questions?
Contact your Husky Project Engineer or the general inquiry numbers below

Americas Vermont - Tel. (802) 859 8000
Brazil São Paulo - Tel. (55) 11 4589 7200
Europe Luxembourg - Tel. (352) 52 11 51
Asia China – Tel. (86) 21 3850 8000